
From Konnakol to Live Coding
Alex McLean
Then Try This

Sheffield, United Kingdom
alex@slab.org

Abstract
Konnakol is a South Indian, Carnatic musical practice in-
volving the vocal recitation of algorithmic, geometric rhyth-
mic patterns of non-lexical syllables. I reflect on the expe-
rience of learning konnakol rhythms, and of adapting the
TidalCycles and Strudel live coding environments to better
represent Konnakol-inspired rhythms, based on the concept
of themetrical tactus. I share visualisations of examples, and
the development of a hybrid practice that integrates vocal
patterns with live coding. I conclude by considering the is-
sue of cultural appropriation around this work.

CCSConcepts: •Applied computing→Performing arts;
Sound andmusic computing; •Theory of computation
→Models of computation; • Software and its engineer-
ing→Domain specific languages; Functional languages.

Keywords: carnatic music, konnakol, konnakkol, live cod-
ing, rhythm

ACM Reference Format:
Alex McLean. 2024. From Konnakol to Live Coding. In Proceedings
of the 12th ACM SIGPLAN InternationalWorkshop on Functional Art,
Music, Modelling, and Design (FARM ’24), September 2, 2024, Milan,
Italy. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/
3677996.3678290

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
FARM ’24, September 2, 2024, Milan, Italy
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1099-5/24/09
https://doi.org/10.1145/3677996.3678290

In all Indian musical traditions, learning,
rationalization and sharing are part of an internal
process within and between artists. The magnificence
of this non-scribal technique is the acceptance of
diversity and the possibility of continuous musical
change. The internalization of structure and form in
the art, the role of memory and rediscovering without
written reference keeps the music moving and varied.
Every voice is not identical; the possibility of music
bending and swaying across regions, traditions and
time is real. At no point is the music etched in stone,
trapped in time, a stone tablet of commandments.

T. M. Krishna, ”Music and Justice” [5]

1 Introduction
The above epigraph from T.M. Krishna celebrates the role of
living memory and continuous change in ‘non-scribal’ mu-
sical practice. Frommy European perspective this is refresh-
ing, when printed staff notation has such a hold over music-
related scholarship in the West. However, this oral/scribal
dichotomy is less distinct in those computer-supported mu-
sics where notations can be open to continual change, for
example the ‘from-scratch’ style of live coding, where no-
tations are written, manipulated and (finally) deleted live,
gaining an improvisatory, time-bound, ephemeral quality.
In these respects, live coding is closer to active speech than
printed notation. This suggests that the comparatively new
practice of live coding has a great deal to learn from the far
older (and therefore far more developed) practices referred
to by T. M. Krishna.

Towards this end, in the following I compare the South In-
dian vocal practice of konnakol with contemporary algorith-
mic music, as a means to develop new live coding practice.
The conduit for this work is the software development of the
TidalCycles and Strudel live coding environments, adapting
their representations for musical pattern inspired by Car-
natic rhythmic structures. I will conclude with a search for
musical meaning in this approach, including consideration
of cultural appropriation, and the possibilities of creating
performances that shift between live coding of the computer
and of the self.

2 Konnakol
Konnakol is a Carnatic musical practice with ancient roots,
developing since around 200CE [14]. Konnakol involves the
oral recitation of solkattu phrase groups of vocable words,

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

36

https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-7428-7935
https://doi.org/10.1145/3677996.3678290
https://doi.org/10.1145/3677996.3678290
https://doi.org/10.1145/3677996.3678290
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3677996.3678290&domain=pdf&date_stamp=2024-09-02


FARM ’24, September 2, 2024, Milan, Italy Alex McLean

which are non-lexical, but closely associated with articula-
tions of the mridangam drum, as well as movements within
the bharatanatyam dance tradition. As a non-scribal, oral
tradition, konnakol is generally transmitted and learned
through recitation and listening rather than via notation.
Konnakol rhythms are highly complex and heavily syn-
copated with frequent changes of speeds, and e.g. addi-
tion/subtraction of beats from successive repetitions. Still,
there is always a steady underlying pulse, where konnakol
artists are able to perfectly match their rhythmic transfor-
mations to a particular tala structure. While performing,
konnakol artists mark the tala with their hands, for example
by repeating a sequence of clap-finger counts (laghu) and
clap-waves (drutam).

As a mono-lingual English speaker, I am unable to ac-
cess much of the literature on the art form, but in English
“The Art of Konnakkol” by Trichy Sankaran [14] is an ex-
cellent practical introduction which covers some historical
and cultural context, and vocalist and activist T.M. Krishna
is a key reference for cultural and political background on
Carnatic music [7]. Lisa Young has made her Masters and
PhD theses on konnakol available [15], Rafael Reina has a
book on applying Carnatic rhythmical techniques to West-
ern Classical music [12], and David Nelson has published a
Solkattu Manual [11]. For a computer music perspective, an
interview by Rotherham-based musician Mark Fell with the
Glasgow-based Indian musician Nakul Krishnamurthy is in-
sightful, exploring improvisation, notation and tradition in
Carnatic music [6].

However, nothing can stand in for actually learning and
practising konnakol rhythms.1 Indeed, we should take care
not to be too distracted by what Kofi Agawu calls “paper
rhythms” [1]; those rhythmic transformations which are ap-
parent on paper, but have no living reality when performed,
listened to and danced to. I have been lucky to take ele-
mentary konnakol lessons with renowned percussionist B
C Manjunath, changing how I think about and make both
music and music software.

This learning process has allowed me to develop a sense
of internal pulse within a tala, and to feel how rhythms
move around within that tala. It has felt like learning
rhythm from multiple perspectives – it is one thing to learn
to recite a sequence, and something quite different to learn
to do so while clapping the tala. The rhythms then feel dif-
ferent depending on whether I am attending to the syllables,
the rhythmic structure, or the tala. I sometimeswrite the syl-
lables down to help understand the structure of a rhythm,
but it is only when I leave that notation behind that I be-
gin to really learn and feel a rhythm. It is hard to explain in
words, but taking in a new rhythm can at times be a slightly

1I use the phrase konnakol rhythms advisedly; konnakol is a rich art form,
the majority of which I have not touched on. So far my focus has been on
rhythm.

frustrating process of learning and forgetting as I come at it
from different directions before beginning to understand it
as a whole.

Konnakol rhythms are fundamentally algorithmic, and
this is why it is possible to recite long, complex compo-
sitions without notation; the performer generates music
based on simple numerical principles applied to a deep, em-
bodied knowledge of rhythm. Or as B C Manjunath puts it:

“You cannot be complex just for the sake of being com-
plex … [The Spanish dish] paella is complex, it has a lot of
elements in it… but it is built out of many simple things. [If
they are] imbibed into each other, then that becomes com-
plex. … If you understand that you are trying to make some-
thing complex then that is a failure of a musician. The com-
plexity should be for others, but for me it should be simple.”
2

3 TidalCycles and Strudel - Live Coding
Languages for Pattern

TidalCycles and Strudel are software environments for
live coding that I have been adapting to better repre-
sent konnakol-inspired rhythmic structures. TidalCycles
(known as Tidal for short) is a domain specific language
embedded in the pure functional Haskell programming lan-
guage, and was developed by myself from 2009, becom-
ing a thriving free/open source project with many contrib-
utors [10]. In recent years, Tidal has been ported to sev-
eral multi-paradigm languages, most notably to JavaScript
as “Strudel” [13]. Strudel has largely reached feature parity
with Tidal, with some differences following from the differ-
ent constraints and opportunities of JavaScript, as well as
some additional e.g. user interface, visualisation, and tonal-
ity features. This paper discusses features implemented in
both – for ease of explanation I will refer to the Haskell
types when discussing implementation, and for accessibil-
ity to the reader with a web browser to hand, I will share
examples written in Strudel. They have their own lives, but
for the purposes of this paper, lets consider them two sides
of the same coin.

As systems for making music3, Tidal and Strudel enjoy
vibrant communities of practice, supporting performances
and workshops worldwide. These technical and cultural de-
velopments are inseparable, in that Tidal is a software envi-
ronment for thinking about and creating music, but it is the
end-user community of artists that populated that environ-
ment and established its musical and cultural meaning. For
this reason I consider them to be software environments and
not prescriptive software tools. It has been a privilege to be
involved in these cultural developments, including through

2Quoted from this interview with B C Manjunath: https://www.youtube.
com/live/6kYwZ8S-qBQ?feature=shared&t=1761
3Tidal and Strudel have also been used for other pattern-based media, such
as making visuals, choreographies and textiles.

37

https://www.youtube.com/live/6kYwZ8S-qBQ?feature=shared&t=1761
https://www.youtube.com/live/6kYwZ8S-qBQ?feature=shared&t=1761


From Konnakol to Live Coding FARM ’24, September 2, 2024, Milan, Italy

online community building, festival organisation and devel-
opment of the wider algorave movement [3]. The software
and community had to develop together; one could not have
been imagined without the other.

3.1 Musical Patterns as Functions of Time
Theaffordances of Tidal, Strudel and other ports follow from
their common, core representation of patterns as functions
of time. This is inspired by signals in Functional Reactive
Programming [4], but with support for both discrete events
and continuously varying values within the same Pattern
datatype.

type Time = Rational
data TimeSpan = TimeSpan {begin :: Time,

end :: Time}
data Event a = Event {whole :: Maybe TimeSpan,

active :: TimeSpan,
value :: a}

data Pattern a =
Pattern {query :: TimeSpan -> [Event a]}

Apattern then, is a function from (rational) time to events.
A pattern function is queried for a particular timespan win-
dow, and returns events taking place within that window.
Each such event consists of a value, and a timespan during
which that event value is active within the queried timewin-
dow. Discrete events have an additional timespan represent-
ing an event’s ‘whole’ timespan. This is needed to represent
an event that is a fragment of a larger one; this occurs where
an event extends outside the queried window, or where a
pattern transformation slices up events into parts.

Because patterns are functions, they are highly compos-
able, in both the computer scientific and musical sense.
However one problem with patterns is that there are a di-
verse multitude of ways to compose them together. As a re-
sult, Tidal defines a range of applicative function application
and monadic bind/join functions. With a rich combinator
library of pattern transformations, Tidal provides rich and
flexible domain-specific library, designed to be terse and ex-
pressive enough to improvise with in live performance.

Strudel is implemented in JavaScript, and so does not
have the benefits of a type system. Nonetheless it is a faith-
ful port of Tidal as described above, including its approach
to applicative andmonadic-style functional composition. In-
deed, all the examples in the following are in implemented
in Strudel, so that the reader can play with them in a web
browser without having to install Tidal. Thanks to the work
of Felix Roos (a lead developer of Strudel), it is even possi-
ble to work with Strudel using Tidal’s Haskell syntax, via
the tree-sitter-haskell project.

3.2 Expanding Tidal and Strudel to Support
Konnakol-Inspired Patterns

One limitation of representing patterns with functions is
that they are opaque, so that when combining two patterns,
it’s difficult to fully consider the structure of those patterns.
Take for example concatenation – appending one pattern to
another. Functions of time are in principle infinite, so we
can never reach the end of the first pattern in order to play
the second one. Tidal’s answer to this is cycle-based com-
position, where a cycle is roughly equivalent to a measure
or bar in Western classical music, but is perhaps closer to
the idea of a tala cycle in Indian music. Rather than concate-
nating whole patterns, Tidal concatenates successive cycles,
resulting in a cyclic interleaving of patterns.

cat("red green", "blue orange purple");

As you can see in the above visual example using Strudel,
each cycle is split in half, with the first half containing two
events of one quarter of cycle each, and the second half hav-
ing three events of one sixth of a cycle each.4 Sometimes
however, we might want divide time up ‘stepwise’, so that
each event in the resulting pattern has equal duration, tak-
ing up one fifth of a cycle. Indeed, stepwise transformation
and composition of patterns is a pervasive feature of Car-
natic music. Strudel and Tidal now have an s_cat (stepwise
cat) function for this:

s_cat("red green", "blue orange purple");

In the above, all five steps have the same duration. Even
for this basic functionality, the s_cat function needs to
know something about the structure of the two patterns
in order to combine them. That is not possible when com-
posing functions of time together, as the structure of the
patterns is not known until the resulting function is later
queried.

It took two different attempts to support this stepwise
functionality. The first was to create a pattern type class,
with the existing functional patterns as one instance, plus
an additional type instance implementing patterns as data
structures.This worked to a large extent, with a great deal of
functionality implemented relative to the type class, rather
than the two instances. However despite much work, I came
to the conclusion that this approach was over-complicated,
which showed in the resulting end-user interface. I even-
tually settled on a simpler approach, based on the idea of
maintaining the ‘tactus’ of a pattern.
4The double-quoted text denotes the ‘mini-notation’, a mini-language im-
plemented in both Strudel and Tidal for describing potentially complex
polymetric rhythms. Here they are used to describe simple contiguous
sequences.

38



FARM ’24, September 2, 2024, Milan, Italy Alex McLean

3.3 Musical Tactus
In music, the tactus is a high-level pulse felt in the mu-
sic, known as the ‘clapping rate’, or the pulse underlying
a piece of music that an individual or crowd chooses to
clap along with. There is work to automatically infer the
most likely tactus from a signal in theMusic Information Re-
trieval field, however the tactus is often ambiguous. One per-
son might clap twice or half the speed of another, and even
more problematically, in polyrhythmic music, each listener
must choose which rhythm to clap to. A trained musician
might even mark multiple tactuses with different limbs. In-
cluding tactus in amusical representation therefore requires
this ambiguity to be confronted.

In Tidal and Strudel, the tactus is simply added as an
optional pattern field, along with an additional pureValue
field. In Tidal’s Haskell implementation, the type then looks
like this:

data Pattern a =
Pattern {query :: State -> [Event a],

tactus :: Maybe Time,
pureValue :: Maybe a
}

Stepwise functions can then use the tactus when combin-
ing patterns, for example to find the relative proportion to
create equal steps in the result of s_cat. The pureValue
field holds a value only for ‘stable’ patterns, i.e. those of a
single value that repeat once per cycle. This is maintained
to support tactus calculation; a tactus can only be calculated
by pattern transforming functions where certain arguments
are stable. On this basis, a range of additional stepwise pat-
tern combinators are defined, all prefixed by s_.

The result of our earlier s_cat example is the equivalent
of "red green blue orange purple"; this has a tactus of
5, being the sum of its component tactuses. However, the
tactus of our earlier cat example is ambiguous. There at
least four possibilities:

a) clapping the onsets of component patterns
→ tactus of 2

b) clapping onsets of elements in first component
→ tactus of 4

c) clapping onsets of elements in second component
→ tactus of 6

d) clapping the lowest common multiple
→ tactus of 12

Currently, a) is the default, and either b) or c) can
be specified by marking one or the other as being the
‘strong’ component with a caret (^) symbol (e.g. cat("^red
green", "blue orange purple") for b). d) is the re-
sult when both components are marked as ‘strong’
with cat("^red green", "^blue orange purple"), giv-
ing the tactus where every event falls on a ‘clap’.

3.4 Stepwise Combinators
The combinators are in a fairly early stage of development,
with the aim of making konnakol-inspired rhythms easy to
express. For example, the s_taper function is inspired by
yati structures, where phrase lengths are successively re-
duced or increased by one. The below applies s_taper to
an integer sequence form 1 to 8, first building and then re-
ducing the sequence by one step per repetition, as visualised
in Figure 1.

stack(
note("1 2 3 4 5 6 7 8").s_taper("-1 1", 8),
s("clap clap wave").fast(6)

);

This increasing and decreasing is known as a mridanga
yati, and is shown with the underlying clap-clap-wave pat-
tern often used to mark the rupaka tala. Because the yati
pattern has seventy two steps, and the rupaka tala can be
viewed as having three, we can fit one cycle of the yati to
six cycles of the tala, where we clap or wave every 4 steps
of the yati.

"red pink".s_tour("black", "grey", "white");

The s_tour function above adds the “red pink” pattern
progressively backwards through each repetition of the
black-grey-white sequence. Note that in these examples,
only the first repetition is shown, but as a function of time,
the pattern will repeat forever.

stack(
"1 2 3 4 5 6 7".s_expand("3 2 1 1 2 3"),
"wave wave - clap - clap -".fast(6)

);

The above use of the s_expand function repeats the 1-7
integer sequence for each element in the 3, 2, 1, 1, 2, 3 se-
quence, but expanded by the given factor. The result is a 84
step pattern, which fits the 7-step “wave wave - clap - clap
-” cycle of the misra chapu tala, as visualised in Fig. 2.

4 Fitting the Tala
According to Trichy Sankaran, the term tala is used in a
broad sense to describe all important rhythmic principles,
but also in a specific sense to refer to metrical cycles “… com-
posed of traditionally determined rhythmic units which are
indicated through conventionally followed hand gestures.”
The tala provides the ground for rhythm, influencing our ex-
perience of rhythmic patterns significantly, being “the foun-
dation upon which intricate devices of cross-rhythm and
syncopation are built.[14, pg. 36]

It is important for a piece to align with the cyclic time-
measure of a particular tala, by having a total number of

39



From Konnakol to Live Coding FARM ’24, September 2, 2024, Milan, Italy

Figure 1. A mridanga yati in rupaka tala

Figure 2. Grouping in misra chapu tala

beats divisible by the duration of the tala. In other words,
the piece should perfectly end at the sam – the beginning
and therefore also the end of a cycle. A subsection within
a piece need not fit the tala, however. For example a tradi-
tional Korvai is divided into two sections, with the second
part containing groups of three repetitions of a phrase, each
group repeated three times divided by gaps. The piece can
then fit the tala by adjusting the repeated phrase or the du-
ration of gaps between groups.The konnakol or mridangam
artist calculates how to best fit the piece to the tala through
such adjustments.

From a computer scientific perspective, this looks like a
problem to solve; we could attempt to formalise an algo-
rithm for fitting a korvai to a tala. However, at this point
we should pause and consider where we draw the line of
automation.

This notional ‘line of automation’ divides aspects ab-
stracted and automated by a computer, from those that we
creatively and directly engage with as humans. Konnakol
is by its nature computational, requiring calculation as part
of its artistry, but this does not mean that we wish to auto-
mate it. Just as people do not generally start to learn to play
the guitar by building a robot, we should be careful not to
approach music as a problem to solve. Fundamentally, mu-
sic is an activity, and as music-makers, we want to immerse
ourselves in that activity.

As B C Manjunath points out5, the body is a much more
advanced system for thinking about sound than a computer.
Accordingly, live coders use programming languages not to
automate the generation of music, but to turn programming
itself into music-making, as a means of creating music in
and for the moment. In this I argue that they are not only

5See B C Manjunath’s answer to a question on formalisation of Konnakol:
https://www.youtube.com/watch?v=6kYwZ8S-qBQ&t=2697s

lead by ideas but more importantly by perception of musical
outcomes. Live coding environments support immediately
turning an idea into music, but it is perception of the musi-
cal outcome with all its unexpected rhythmic complexities
and juxtapositions that inspire the next edits to drive the
music forward. Rather than attempting to codify the rules
of konnakol then, I focus on giving space for musicians to
choose, adapt and apply rules themselves, inspired by kon-
nakol.

5 Developing Practice
To be meaningful, the technical development of computer
music language should be part of a wider development of a
culture of creative practice around it. To explore this, I de-
cided to adopt a rule that I would no longer askmy computer
to perform a musical algorithm that I could not performmy-
self. This constraint works to define a creative space, push
my rhythmic practice forward, and create possibilities for
shifting between and integrating code-driven and vocal per-
formance of an algorithm.

This approach has lead me to develop a performance prac-
tice that integrates live coding with algorithmic vocal pat-
terns, involving the audience in clapping the tala and en-
couraging them to look for and feel the syncopations which
result, and perhaps sense the heritage connection between
algorithmic patterns [9] in vocal recitation and computer
music. Informal feedback frommy first public performances
trialling this approach at EMF camp (May 2024, Eastnor UK)
and Corsica Studios (June 2024, London UK) has been en-
couraging. Although I have not conducted a thorough sur-
vey, informally some audience members indicated that ex-
plaining and demonstrating themathematical aspects of car-
natic rhythm using both my voice and code helped them

40

https://www.youtube.com/watch?v=6kYwZ8S-qBQ&t=2697s


FARM ’24, September 2, 2024, Milan, Italy Alex McLean

understand the role of algorithms in music.6 This points to
the exciting possibility that introducing konnakol-inspired
vocal practice to live coding performances could allow audi-
ences to gain deeper appreciation of algorithmic music as a
whole, by offering a new way to listen to it.

6 Cultural Appropriation
Developing live coding practice inspired by konnakol as
a European is of course an act of cultural appropriation.
Although intermixing of cultural sources is common and
broadly accepted as a function of music, it can be prob-
lematic, whether throughmisattribution, exploitation, copy-
right theft, or in the case of Deep Forest’s “Sweet Lullaby”,
all three [5]. Kofi Agawu [2] provides an informative per-
spective on the pervasive spread of musics of Africa and the
African diaspora in the global north. Agawu weighs appro-
priation against homage, and issues of copyright around tra-
ditional music where the notion of ownership does not nor-
mally apply. He does see use of traditional African ‘timeline’
rhythms in western minimalist compositions as potentially
positive in drawing affinities with traditional music while
creating something novel in a new context, but it is a com-
plicated picture.

Returning to Carnatic music, it is certainly important to
understand some of the wider context of its rhythms when
making systems inspired by konnakol. This includes recog-
nising its background in ancient sacred texts, as well as re-
flecting on ongoing debates on the role of caste privilege
in music between traditional and progressive voices. For
now, I simply acknowledge that towards my aim of enrich-
ing algorithmic music with heritage algorithms I am appro-
priating culture, and explore the resulting tensions through
scholarship and collaboration, while opening myself to crit-
icism, and opening the software itself as free/open source
software.

7 Conclusion
Konnakol throws a great deal of light on ‘from-scratch’ live
coding practice. Too often, algorithmic music is reduced
to sequencing, repetition and randomness, but konnakol
demonstrates how rich the generative possibilities of pat-
tern can be when the focus is on human memory and per-
ception, rather than fixed notation. By developing hybrid
practices that involve both human- and computer-realised
algorithms, we are able to embody abstraction so that we
can creatively improvise with algorithms through our bod-
ies, reclaiming computation from automation.

Acknowledgements
This work is funded by a UKRI Future Leaders Fellowship
[grant number MR/V025260/1].
6With thanks to audience member and creative technologist Lu Wilson for
this informal feedback: https://mas.to/@TodePond/112695287412247197

References
[1] Agawu, K. 2006. Structural Analysis or Cultural

Analysis? Competing Perspectives on the “Standard
Pattern” of West African Rhythm. Journal of the
American Musicological Society. 59, 1 (Apr. 2006), 1–
46. DOI:https://doi.org/10.1525/jams.2006.59.1.1.

[2] Agawu, K. 2016. The African Imagination in Music.
Oxford University Press.

[3] Collins, N. and McLean, A. 2014. Algorave: A sur-
vey of the history, aesthetics and technology of live
performance of algorithmic electronic dance music.
Proceedings of the International Conference on New In-
terfaces for Musical Expression (2014).

[4] Elliott, C. 2009. Push-pull functional reactive pro-
gramming. Proceedings of 2nd ACM SIGPLAN sym-
posium on Haskell 2009 (2009).

[5] Feld, S. 2000. A Sweet Lullaby for World Mu-
sic. Public Culture. 12, 1 (Jan. 2000), 145–171.
DOI:https://doi.org/10.1215/08992363-12-1-145.

[6] Fell, M. 2022. Structure and Synthesis: The Anatomy
of Practice. Urbanomic.

[7] Krishna, T.M. 2017.ASouthernMusic. HarperCollins.
[8] Krishna, T.M. 2020. Music and justice. (New Delhi,

Dec. 2020).
[9] Mclean, A. 2020. Algorithmic Pattern. Proceedings of

the International Conference on New Interfaces forMu-
sical Expression (Birmingham, UK, Jun. 2020), 265–
270.

[10] McLean, A. 2014. Making programming languages
to dance to: Live Coding with Tidal. Proceedings of
the 2nd ACM SIGPLAN International Workshop on
Functional Art, Music, Modelling and Design (Gothen-
burg, 2014), 63–70.

[11] Nelson, D.P. 2008. Solkattu Manual. Wesleyan Uni-
versity Press.

[12] Reina, R. 2015. Applying Karnatic Rhythmical Tech-
niques to Western Music. Routledge.

[13] Roos, F. and McLean, A. 2023. Strudel: Live Coding
Patterns on the Web. Proceedings of the 7th Interna-
tional Conference on Live Coding (Utrecht, Nether-
lands, Apr. 2023).

[14] Sankaran, T.S. 2010. The Art of Konnakkol (Solkattu):
Spoken Rhythms of South Indian Music. Lalith
Publishers.

[15] Young, L. 1998. Konakkol: The History and Develop-
ment of Solkattu : the Vocal Syllables of the Mridan-
gam. University of Melbourne, Victorian College of
the Arts.

Received 2024-06-02; accepted 2024-07-02

41

https://mas.to/@TodePond/112695287412247197
https://doi.org/10.1525/jams.2006.59.1.1
https://doi.org/10.1093/acprof:oso/9780190263201.001.0001
https://doi.org/10.1145/1596638.1596643
https://doi.org/10.1145/1596638.1596643
https://doi.org/10.1215/08992363-12-1-145
https://www.india-seminar.com/2020/736/736_tm_krishna.htm
https://doi.org/10.5281/zenodo.4813352
https://doi.org/10.1145/2633638.2633647
https://doi.org/10.1145/2633638.2633647
https://doi.org/10.5281/zenodo.7842142
https://doi.org/10.5281/zenodo.7842142

	Abstract
	1 Introduction
	2 Konnakol
	3 TidalCycles and Strudel - Live Coding Languages for Pattern
	3.1 Musical Patterns as Functions of Time
	3.2 Expanding Tidal and Strudel to Support Konnakol-Inspired Patterns
	3.3 Musical Tactus
	3.4 Stepwise Combinators

	4 Fitting the Tala
	5 Developing Practice
	6 Cultural Appropriation
	7 Conclusion
	Acknowledgements
	References

