
Algorithmic Patterns on the Live Loom

Alex McLean

Algorithmic pattern is an expansive practice running across the arts and crafts, that is ancient,

yet core to the advance of contemporary creative technology1. In this chapter I introduce the

Live Loom as a case study in algorithmic pattern, bringing together the ancient weaving

technology of warp-weighted looms with the contemporary technology of computer

programming languages. The Live Loom is (perhaps literally) a tangle of old and new, and by

attempting to untangle its threads and wires from around its physical wooden frame and

metaphysical syntax trees, I explore algorithmic pattern as an ancient, technological and

developing craft tradition.

I introduce the Live Loom in terms of its many layers of physical qualities starting with the

threads themselves, their warping, the crossings of warp and weft threads, then progressing

into metaphysical representations of drawdowns, syntax trees and procedures. In so doing, I

explain how interactive notations reveal what is normally hidden by notation - a lively world

of threads that compels us to reconsider our relationship with technology as craft.

1 Mclean, ‘Algorithmic Pattern’.

1

https://www.zotero.org/google-docs/?HOF0no


Figure 1: The Live Loom, a hybrid, open hardware, warp-weighted hand loom, with 16
computer-controllable warp threads. Photo credit: James Hendy

Computation in Craft

Ada Lovelace, known as the first computer programmer for her work with Charles Babbage,

is often cited for recognising common patterns across weaving and computing. However her

foresight carries a misapprehension that has since been carried through the history of

computer science. The motivation for creating the Live Loom is to try to expose this

misapprehension, by connecting computer programming directly with weaving.

Lovelace shares her thoughts on weaving and computing in her extensive notes as translator

of a piece written about Babbage’s Analytical Engine: “By the introduction of the system of

backing into the Jacquard-loom itself, patterns which should possess symmetry, and follow

regular laws of any extent, might be woven by means of comparatively few cards.”2 This

suggestion is on one hand visionary; following the technology transfer of the Jacquard punch

card reader from weaving to computing, Lovelace sees how the computational procedure of

looping a subset of cards could be imported back from the Analytical Engine to the Jacquard

2 Menabrea, Sketch of the Analytical Engine Invented by Charles Babbage, with Notes by the Translator Ada
Lovelace.

2

https://www.zotero.org/google-docs/?mR2ptY
https://www.zotero.org/google-docs/?mR2ptY


device. However as Ellen Harlizius-Klück has previously argued3, weaving has always been

computational, and in not recognising this, Lovelace seems to have mistaken the opportunity

to reintroduce computation to weaving for the opportunity to introduce it for the first time.

This would not only be a misinterpretation of history, but would miss the opportunity to

incorporate advanced understanding embedded in traditional weaving practice in the

development of new computational machines. Today, we still follow Lovelace's thinking in

assuming that the youngest technological practice is the most advanced one, which does not

stand to reason, and leads us to continually re-invent a poorer wheel.

Figure 2: Euler diagram showing the logical relationship between vernacular, formal, manual

and automatic forms of computation.

To differentiate the Live Loom from the Jacquard mechanism, the Euler diagram in Fig. 2
shows the logical relationships between different kinds of computational technology. One
dichotomy drawn in the diagram is between vernacular and formal computation. Vernacular
computation includes the kind often examined in the field of ethnomathematics; ways of
working that are passed down by word of mouth. Formal computation is a process which is
unambiguously notated in such forms as a computer programmer’s code listing, a
mathematician’s lambda calculus, or a weaver’s draft. The other dichotomy shown is between
manual and automatic computation. For computation to be automated, it must be formalised,
so that it may be followed by an electronic or (in Lovelace's time) a mechanical computer.
However, where a computation is manually worked through by a human, this could be done
either on a vernacular or formal basis. A human is perfectly capable of following formal
instructions (such as a weaver’s treadling pattern, a knitting pattern, or recipe) accurately, as

3 Harlizius-Klück, Ellen. ‘Weaving as Binary Art and the Algebra of Patterns’.

3



well as applying embodied knowledge, accrued through the vernacular - informal instruction
or personal exploration. However, since the industrial revolution, formal computation has
become closely associated with automation, and so craft practices based on manual
exploration of computational, algorithmic patterns have been sidelined. What I try to show in
the following, by introducing and using the Live Loom, is the generative, creative
possibilities of manual, yet formal systems of computational craft.

Threads

In the present day, we relate the zeroes and ones of binary (base two) counting with modern

computing, but we know from the field of ethnomathematics that humans have always

engaged with binaries.4 This is clear even when looking at a single thread, which has two

possible spin directions - S (holding a thread vertically, we see the spin travel diagonally top

left to bottom right) or Z (top right to bottom left). If you tighten the spin of a thread and hold

its two ends together, it will self-ply - creating a shorter ‘doubled’ yarn with the opposite spin

direction - a logical negation.

A thread is typically composed of smaller strands, which are ultimately composed of fibres,

the thread itself already being the result of a long process of production. Threads therefore

exhibit fractal self-similarity (fibres within strands within yarns, etc) all the way to

microscopic properties which still affect the visual and physical qualities of the resulting

weave. Nonetheless, as a useful simplification for present purposes, in the following we treat

the thread as the atomic fundamental unit of a weave. While threads are marked by discrete5

binaries such as spin direction, they also flow continuously. Threads are therefore both

discrete and continuous, or in other words both digital and analog. In weaving, a loom is a

device for focussing on binary interactions, at discrete crossing points, and therefore it is

these binary and discrete qualities that we focus on here. Regardless of the presence of

electricity or electronics, any loom is fundamentally a device for working with discrete

crossing points and weaving is therefore fundamentally a digital craft.

For a detailed examination of the binaries of the threads themselves, we could look to Andean

khipu makers, for example the historical practice of record keeping within the former Inka

empire, and the earlier, more improvisatory use by the Wari. As far as we understand, khipus

integrate spin direction, knot direction and several other binary properties with a decimal

5 Something is discrete when it is countable in clear units.
4 Babbitt, Lyles, and Eglash, ‘From Ethnomathematics to Ethnocomputing’.

4

https://www.zotero.org/google-docs/?LPAW5s


system of knot-tying, in order to record discrete numerical information.6 Most textile artists

deal with threads, but in many cases that is where shared understanding ends. For example

knitting, braiding, and weaving are three fundamentally different families of structures, and

so knitters, braiders, weavers and indeed khipu makers do not necessarily have much to say

to each other. For the present chapter, we focus on weaving structures.

Threads are highly susceptible to disorder - drop a few threads on the floor and they will

seem to tangle almost autonomously. The role of a weaver is to impose order on threads,

structuring them in order to create structures which hold together as a fabric, starting with the

warp, which we examine now.

Warping

A core prerequisite for weaving is to order parallel threads and hold them in place under

tension. These are called the warp threads, and in weaving diagrams they are generally

conceived as running vertically from the top to the bottom of the page, with perpendicular

weft threads introduced later, from side to side. These weft threads are interlaced with the

warp according to a particular pattern of movement. Setting up a loom with an arrangement

of differently coloured warp threads introduces rich creative constraints on what visual

patterns can later be woven on that loom, and any decision about how to do so is not taken

lightly; the warping process might take weeks, depending on the thread count and complexity

of the loom.7 The Live Loom is designed for experiment and learning, and has a very low

thread count of only 16 warps, but still the process of warping the loom takes over an hour.

Warp weights

One of the primary functions of a loom is to hold the warp under tension, using technologies

that have developed over millennia. Modern looms tend to create tension between two drums,

as the warp is rolled off one drum, and on to another as woven fabric. Careful warping

techniques ensure that all the threads are held at the same tension. A much older (indeed

ancient) approach is to add weights to the warp. This is how tension is created on the Live

Loom, by suspending warp threads from the top of a frame, with each thread kept under

tension by a weighted bobbin, dangling at the bottom. Each warp is wound around the

7 Here we assume the warp threads are visible in the resulting textile, this is not the case in what are called
weft-faced weaves.

6 There are also ‘narrative quipus’ with a different structure and are understood even less than the numerical
ones.

5



bobbin, so that the length of the resulting fabric is not limited by the size of the loom, but by

the length of thread that is wound around each bobbin. As the weaving progresses, it is

wound onto the top bar, and more warp is released from the bobbins, so that they are near, but

not touching the surface on which the loom is placed.

Warp-weighting is anachronistic technology, but nonetheless has a number of advantages

over modern looms. Tension comes only from gravity, which is of course a constant, resulting

in an even tension from equal weights. Therefore warp-weighting creates more reliably

uniform tension than the modern drums mentioned above. Furthermore, the threads are only

attached to the loom at one end, meaning that the warps may easily be rolled up for transport

and storage.

The weighted bobbins used on the live loom are technologies borrowed from another ancient

textile art - Japanese kumihimo braiding. I was introduced to kumihimo through tuition from

braiding expert Makiko Tada, using traditional Tama bobbins. In kumihimo, each bobbin

must hold itself in place at the end of its thread, while also allowing the braider to quickly

and easily release more thread. Traditionally this is done with a slipping hitch, where the

thread twists back on itself on the bobbin in such a way that when the braider pulls the thread

in the right direction, more thread is released. I use hobbyist plastic bobbins (with metal

weights incorporated), but using the same slipping hitch I learned from Tada-Sensei.

Passing the weft

With the warp held under tension from top to bottom, the weft can be introduced, from one

side to the other, and back. To create a weave, the weft travels over and under (or in front

of/behind) the warp. However, generally it is the warp threads which move to create the

structure - for example by alternate warp threads being pulled forward. This creates a gap

between the warps which have been pulled forward, and those which have been left behind,

called the shed. The weft is then passed through this shed. On the Live Loom, warp threads

can be selected and pulled forward using wooden sticks as levers, each one attached to a

single warp thread (using a string heddle).

Having passed the weft from left to right, the weaver then pulls forward a new selection of

warp threads, creating a new shed. They then pass the weft back through, this time from right

6



to left.8 Creating the new shed also has the function of trapping the previous weft in the

weave, and physically pulling the shed open will pack that weft into place. The weft can be

packed in further using a flat stick known as a sword. Each weft is then co-dependent on the

weft before and after, so that the overall structure holds together as a textile weave.

Weave

The selection of warp threads results in a particular weave structure, with profound impact on

both the behaviour and appearance of the resulting textile. The translation from binary ups

and downs, into physical cloth with real-world properties, is fascinating.

Weaving structure can be conceptualised and notated as a binary grid, but this is an

abstraction - weaves are three dimensional. The depth of this statement can be hard to grasp,

partly because we are so used to the image of Jacquard’s two dimensional, binary punched

cards, as well as the older two-dimensional, binary form seen in weaver’s grid-based

notations, known as lift plans, drafts and drawdowns. But these two dimensional grids only

notate sheds (and e.g. on shaft looms, tie-ups and treadling), and not the real-world

complexity of the woven outcome.

One place that the three-dimensionality of weaving becomes clear is at either edge of the

fabric, known as the selvage. For handweavers, adjustments to the structure must be made

here for the weave to hold together consistently. This requires thought and agility that is

hardly possible at modern machine looms, which instead simply cut off the edges as they are

woven. By contrast handweavers put thought into creating edges which hold together for

consistent results, perhaps even integrating a weave with a very different structure such as

tablet weaving around its border.9 Adjustments might also be needed elsewhere, to make sure

every thread is properly integrated into the weave, applying methods to avoid unwanted loose

threads, known as floats.

The difference between notation and weave is particularly stark in doubleweave. When some

structures are woven, they result in two (or more!) fabrics, one lying on top of the other. This

happens when there are ‘binding points’ with some previous wefts but not others, causing

9 Harlizius-Klück, ‘Weaving as Binary Art and the Algebra of Patterns’.

8 Alternatively, they might select and use a different weft, for example one of a different
colour.

7

https://www.zotero.org/google-docs/?gTyZ1u


distinct layers to form, an outcome which can confuse and surprise beginner weavers such as

myself. Indeed a well-cited paper on the geometry of weaves misunderstands doubleweave,

describing such structures as ‘falling apart’;10 but when you actually weave these structures,

they do result in well structured textiles, just more than one of them. This demonstrates the

danger of trying to understand weaving ‘on paper’ rather than at the loom. In practice, when a

weaver changes from a doubleweave structure to another one, these different layers are able

to reintegrate into a single fabric, the doubleweave section creating a pocket.

There is confusion then between the structure that we visualise, and the resulting textile we

see and touch. Apart from special cases such as doubleweave, there is a direct

correspondence between the grid structure on the page, and the up-down structure of the

threads in the textile. However, although this structure is present it may be obscured,

especially when we vary warp and weft colours. This introduces interferences, where the

colour pattern in the warp and weft threads interfere with the pattern of the weave structure

imposed on those threads. The result of this interference is a colour-and-weave effect,

emerging from the different patterns of thread colour and weave structure, as Ellen

Harlizius-Klück explains in the first chapter of this collection, and I demonstrate later in the

present chapter.

The woven structure not only influences the visual appearance, but also the behaviour of the

textile. For example the woven textile’s strength, how it drapes, how layered the textile is,

and how it reflects light. We know denim for its strength and durability, and satin for its shiny

front, dull back and draping characteristics - which are much more properties of the denim

and satin weave structures rather than the material that is used. As discussed, weaving

structure is generally represented using binary grids, but the Live Loom adds an additional

layer in order to generate such grids - a pattern language, which I introduce next.

Pattern language

We have already considered weaving drafts above, as a form of notation commonly seen in

weaving crafts and industry. This notation is used while pre-planning a weave that is later put

into production, and may also be created when analysing an existing weave, ‘reverse

engineering’ its structure. Modern industrial weaving is a resource- and time-intensive

process, that needs careful planning and testing to arrive at an intended product. However, the

10 Grünbaum and Shephard, ‘Isonemal Fabrics’.

8

https://www.zotero.org/google-docs/?7h8zyR


Live Loom is not designed to be productive, but to instead support creative exploration and

learning at the loom itself, perhaps reflecting the improvisational approaches to developing

new fabrics seen in traditional weaving. The Live Loom is too small, with too low a

thread-count to produce cloth in useful dimensions, but that is not its aim. It is instead

intended as a platform for live coding weaves, where decisions are made and remade during

the weaving process itself.

Live coding is a movement co-founded by the present author,11 emerging from the digital arts

and particularly the algorithmic music communities around the turn of the millennium. It

began as a way of making improvised music, where a practitioner performs by creating and

manipulating code, while that code generates sound, during a performance. A live coder's

screen is generally projected into the performance space so that the audience can see the code

being written while it generates the music that they hear. As the community has developed,

other performing arts have taken on and developed live coding techniques, and live coded

video and choreographic performances are now common.

As a live programmable loom, the Live Loom resonates with a particular part of live coding

culture, namely slow coding.12 Slow coding eschews high-pressured ‘algorave’ performances

where live coders work furiously on their code to keep their audience dancing, instead each

edit is considered carefully over extended periods (in sympathy with the ‘slow food’

movement). Whereas a live coding musician might make an edit every few seconds, a weaver

on the Live Loom might change their code once every ten minutes or more.

The Live Loom language is a library of combinators for the pure functional programming

language Haskell. In general terms this means that it consists of a collection of words and

symbols, each of which stands for a way to construct or transform binary up/down patterns,

as shown in Table 1. This is a small and straightforward library, building on standard

functionality of the Haskell language.

up /
down

Keywords representing a warp either being up (pulled forward) or
down (left behind) when creating a shed.

[] An empty list.

: Used to add an up or down to a list (starting with the empty list

12 Hall, ‘Towards a Slow Code Manifesto’.
11 Blackwell et al., Live Coding.

9

https://www.zotero.org/google-docs/?SINTut
https://www.zotero.org/google-docs/?6nuyBP


above).

cycle Repeats a list of up/downs indefinitely.

offset n Successively ‘shifts’ each row by the given number ‘n’ of warp
threads.

shift Shifts a row by one (e.g. takes the first up/down in the row and
moves it to the end of the row)

every n f Selectively applies the transformation ‘f’ every ‘n’ rows

backfort
h

Reverses every other row. Shorthand for ‘every 2 reverse’.

invert Turns all the ‘up’s to ‘down’s and vice-versa

zipAnd Combines two weaves - where a warp remains ‘up’ only where
warps on both weaves are ‘up’.

zipOr Combines two weaves - where a warp remains ‘up’ only where
warps on either or both weaves are ‘up’.

zipXOr Combines two weaves - where a warp remains ‘up’ only where
one (but not both) warp are ‘up’.

Table 1. A list of the main functions available in the Live Loom language.

These twelve keywords, along with the natural numbers, are enough to produce an

astonishingly wide range of weaving patterns with a very small amount of code. Each one

stands either for a unit, or a simple operation on those units - the explosion of possibilities

comes from the very large number of ways in which they can be combined into compound

operations.

At the Live Loom

Both computing and textile industries have been overridden by automation over the past

decades and centuries, respectively. Indeed there would seem to be motivation to develop the

Live Loom so that more of it is automated - the shed could be fully opened by the mechanism

without hand control, or the weft could be passed automatically, using one of the machine

loom techniques developed in the textile industry. However, each step taken towards full

automation separates the live coder further from their weave, until they are working only with

two dimensional grids rather than three dimensional material. By keeping hands both on

10



coding and weaving in a physical feedback loop, the weaver-coder has the maximum

opportunity to learn. In the following session I step through a weaving session on the Live

Loom, recounting the problems met and decisions taken.

I began with a few rows of the simplest possible weave, known as the plain weave or tabby,

to make sure the threads were in good order and the solenoids were working. A tabby weave

follows the following lift plan:

Black stands for warp up (and therefore weft down), and white for warp down (and therefore

weft up). If we were weaving with paper strips, with black warp and white weft strips, then

the woven result would look the same as the above image. One way to express such a tabby

weave in the Live Loom language is as follows:

backforth (cycle [up, down])

This repeats the plain weave’s up and down structure, with the backforth function added in

order to reverse every other row. Without applying this function the textile would not hold

together; every weft would follow the same structure, creating no ‘binding points’ (where

weft interlaces with warp and vice-versa) from one weft to the next.

The Live Loom language has a largely mouse-operated programming interface, which is

shown on the left hand side of Figure 3. In this interface words are dragged from a palette on

the right, and arranged into a program on the left. These words are automatically connected

together by the software (based on type compatibility and proximity) into a diagram

representing the syntax tree of the program. This allows functions to be moved around the

code playfully, to look for interesting interactions with other functions. The code generates

the binary grid of a weaving lift plan, which is displayed in the interface, below the word

palette. The grey squares on either side of the lift plan highlight the row which was most

recently woven.

11



Figure 3: The Live Loom interface, showing code on the left, a menu of available words

(functions and values) to its upper right, and the resulting weaving lift plan to its lower right.

A camera feed from the weave itself is shown to the right of the interface. Note that the

camera feed shows the back face of the weave, which can look very different from the front.

When the weaver-coder is happy with their lift plan, it is time to send it to the loom. The lift

plan is sent one shed at a time, by pressing the right arrow key on the computer keyboard.

The same shed can be re-sent with the up arrow, and the weaver can send the previous one

with the left arrow. In this way, the weaver uses the solenoid-driven heddles on the Live

Loom to enact successive rows of the lift plan. This lift plan therefore represents both the

binary up/down movements of the solenoids, and the structure of the woven textile that

results from these movements. In some cases the structure of the weave is readily visible in

the end result. In particular, if the warps are of one colour, and the weft threads of another,

12



then the front face of the resulting weave will often closely resemble

the lift plan pattern, repeated across the fabric. However, as

mentioned earlier, if different threads within the warp and/or weft

have different colours, then the thread colours interfere with the

structure, creating colour-and-weave effects that are surprising to the

lay weaver. In the following I have warped the Live Loom with

alternating white and blue threads, and also alternate between white

and blue wefts. This simple set-up already provides rich ground for

exploring colour-and-weave interactions.

In the case of the plain weave shown in Figure 3, we can see that the

checkerboard pattern of the lift plan has resulted in vertical stripes in

the weave shown on the right. This is because alternating blue/white

pattern of the warp and weft threads mean that the white weft is

always under the blue warp, and the blue weft is always under the

white warp, so the colours of warp and weft always match in the warp

direction. However for reasons of practicality the camera here points

to the back of the weave. If we compare the front and the back side in

figures 4 and 5 respectively, we see this section a) appears as

horizontal stripes on the front, and vertical stripes on the back. Such

effects make the difference clear between a lift plan and a textile. It is

often said that “the map is not the territory”, and in this case we can

view the lift plan as a map for the textile as a territory. While in this

case the map is used to create the territory, we can only really read and fully understand the

map once we know the territory. This may seem like a paradox, but a lift plan has at least two

purposes, one being as a plan for weaving, and the other as an analytical map for

understanding what has then been woven. The textile itself has many properties which are not

present in the abstract notation of the lift plan, and which only emerge in its making.

After four rows of plain weave, I change the lift plan by adding a single ‘down’ instruction to

the code, which now reads “backforth (cycle [up, down, down])” (for brevity, I don’t include

the visual representation of this code here). This produces the following lift plan.

13



With the structure following a back-and-forth path across the weave, the

result is a wave that repeats every three warps and six wefts. Within this

repeat, there are consecutive identical sheds, which in practice means

that two wefts are passed through the same shed. However I had woven

this particular pattern before, and so knew this would not be a problem;

these pairs of wefts are held in order by the warps, and the textile holds

together well.13 Looking at the lift plan, we can see unbroken lines

formed by four white warps. This creates clear ‘floating’ warp threads

on the back of the weave shown in Fig. 5b, each of which travels over

four wefts (if they were shown in black on the lift plan, these floats

would have instead been visible on the front face). These floats occur on

both odd and even warps, and because I alternate thread colours,

therefore both blue and white floats are created. Using these floats as

markers in comparing the lift plan with the woven result, we can see

how the structure is present in the weave. However squinting our eyes,

visually the angular repeating pattern in the weave looks very different

from the wave running down the lift plan.

I should point out that while here I use the ‘backforth’ transformation to construct the lift

plan, this does not match with the reality of how I weave it. We could say that ‘backforth’

simulates the path of a single weft, from left to right, and back again from right to left. But

when it comes to weaving, I am using two wefts - I first pass the white and then the blue

thread from left to right through the first two sheds, and then back from right to left for the

following two sheds. This seems a small technicality but demonstrates that abstractions are at

play - the language works with a model of the weaving process as a notional machine. The

13 Note that if I had been weaving with a single weft, I would have had problems. A single

weft would not be fixed at the edges of the fabric between two identical sheds; the first pass

of the weft would be undone by the second one.

14



term notional machine is borrowed from computer programming education research14, and is

the idea that when writing software we do not address the computer we are using, but an

idealised version of the computer. The properties of this notional machine are implied by the

constructs of the programming language and not the hardware. When coding the lift plan I

work within such abstractions, but when it comes to weaving the resulting patterns I am free

to work beyond the constraints set out in the code. In this case, I introduce additional

constraints in the form of colour patterning not represented in the code at all.

For my next edit to the pattern, I introduce the transformation every 3 shift to the

existing code, so that every third row is offset by one thread in the warp direction15. This

transformation resulted in a lift plan which I decided would not be interesting or even

possible to weave - the floats in the warp direction were too long. Rather than alter this

transformation I add an additional transformation on top of it - every 2 invert, which

creates an interesting-looking lift plan of tessellated, rotated ‘L’s:

However when it came to following this lift plan, I had unexpected problems. The wefts

would not behave in a uniform way and it took some time to begin to understand why. The

results shown in Figures 4c and 5c felt like a mess, without clear patterning as seen in the

above lift plan. The source of my confoundment was in the pairs of sheds forming each row

of tessellated ‘L’s. Where one row adds ‘up’ warps, but does not add any ‘down’ warps (or

vice-versa), the previous weft is lifted up with (or left behind by) the warps. Indeed, this is

how doubleweave is created, where wefts are lifted or left behind in order to weave on

separate layers. If I returned to this pattern to weave it again, I would likely be able to

produce a more consistent result, having realised that I need to pack one weft behind the

other, rather than trying to work them into a clear sequence. Watching the video recording of

15 Looking back at this session, I realise that there was a bug in the ‘shift’ operation, where the final warp on the
right is not shifted. This causes some corruption in the pattern at the selvedge on the right hand side, although
this does not impact the rest of the weave.

14 https://computinged.wordpress.com/2012/05/24/defining-what-does-it-mean-to-understand-computing/

15

https://computinged.wordpress.com/2012/05/24/defining-what-does-it-mean-to-understand-computing/


me working, you can see where I try to pull the shed apart in order to pack the wefts in, but

this does not work for doubleweave - they need to be ‘beaten in’ with a weaver’s ‘sword’.16

I continued the fabric the following day, and with a new piece of code, this time combining

two patterns into one. In particular combining the repeating cycle ‘down, up, up’ with the

repeating cycle ‘up, down’, using a logical ‘and’ operation. The code and the resulting lift

plan are shown below.

zipAnd (cycle [up, down]) (cycle [down, up, up])

Because these repeating sequences have differing lengths of two and three steps, the resulting

repeat is the common multiple of six steps. Taking ‘up’ for true and ‘down’ for false, we then

combine the sequences ‘false, true, true, false, true, true’ with ‘true, false, true, false, true,

false’. The logical ‘and’ returns true only for those steps which are true in both sequences,

giving ‘false, false, true, false, true, false’. This might seem an arcane way to produce such a

short sequence of six binary values, but its usefulness is in its generative nature. Once the

code is written, we can quickly modify, add and remove elements to quickly explore a very

wide range of possibilities.

Unfortunately, the lift plan resulting from this code is hardly weavable - every other warp is

not integrated into the weave, or in other words those warps float completely under the

weave. So, I added an every 2 to the logical ‘and’ operation zipAnd. This means that the

‘down up up’ sequence is only combined with the ‘up down’ sequence every other shed, and

is otherwise left as a simple three-step sequence:

every 2 (zipAnd (cycle [up, down])) (cycle [down, up, up])

16 At the scale of the Live Loom, I use a ‘lolly pop’ stick for such a sword.

16



This lift plan has an interesting diagonal twill-like structure, but after weaving 10 wefts with

my usual alternating colours I did not feel inspired by the results (see Fig. 4d/5d), so I looked

for a more interesting pattern. I settled on adding an additional rev instruction, so that the

every 2 now reverses every other row, rather than operating on the logical zipAnd

operation, which there now applies to all the wefts.

every 2 rev (zipAnd (cycle [up, down]) (cycle [down, up, up]))

This new every 2 rev code actually does exactly the same transformation as

backforth, just expressed in a different way, with different opportunities for being

changed. The resulting lift plan resembles a diagonal brickwork-like structure, and although I

persist with it for 24 wefts this time, looking for an interesting repeat to emerge, I was still

left feeling that the lift plan looked more interesting than the woven results (see Fig. 4e/5e).

Finally, I made one more edit in place of the every 2 rev, trying a few different functions

and numbers before settling on every 3 inv, i.e. swapping the ‘ups’ and ‘downs’ for

every third weft. The result was a lift plan pattern of tessellated ‘+’ figures.

every 2 rev (zipAnd (cycle [up, down]) (cycle [down, up, up]))

As with my earlier experience with the unanticipated doubleweave effect, the wefts were

again unruly, but this time in a more interesting way. This weave has floats running in both

the warp and weft direction. These interact on the back face of the weave seen in Fig. 5f,

17



resulting in wefts which seem to run diagonally across the textile, defying the rules of the

weave (where wefts can only run perpendicular to the warp). This is partly due to the warp

occluding the weft, with the visual result that the paths of different wefts are joined through

Gestalt perception, creating the illusion of a continuous diagonal path. It was fascinating to

see this interaction emerge over 26 wefts. Still, I felt the need to finish this unruly section

with four tidier rows of plain weave, which I picked by hand, bypassing the code and

solenoids.

Through the process of weaving the above, I move between code, lift plan and weave,

building a mental model of the working threads, including doubleweave. From this I am able

to adjust my way of working to match the mental model I build, in order to eventually

produce better results. This is the process of building tacit knowledge, which (aside from the

process of writing this chapter) is not written down, despite growing through interaction with

live code.

Digital blindspot

Colour and weave effects are an example of a computational procedure in weaving that arises

from the combination of discrete, patterned elements into a more complex whole. Once we

recognise this computational nature of weaving, we must also recognise that traditional

weaving is a digital artform. This is however at odds with the usual narrative around digital

arts. Normally, digital art is described as a recent development, which for example Christiane

Paul introduces17 as a culture of practice that grew in the 1990s, noting that the first digital

computer (the ENIAC) was constructed in 1946, with theoretical foundations laid earlier. But

this short-term view of digital art breaks down on close examination - digital technology is

any which deals with discrete, countable elements. There are many examples of such

technologies, from the abacus to the loom, which predate the ENIAC by thousands of years.18

It seems then that the automation of computation in the 20th century through mechanical and

electronic means has produced a deeply problematic blindspot. This blindspot confuses our

understanding of digital art and algorithmic patterns in general. Thanks to industrial

automation, we now think of computers as being separate from ourselves, whereas

beforehand computing was something that humans did; indeed a computer was a job title,

18 McLean, Harlizius-Klück, and Griffiths, ‘Digital Art’.
17 Paul, Digital Art.

18

https://www.zotero.org/google-docs/?8Fdb73
https://www.zotero.org/google-docs/?YylCft


often filled by women.19 The same blindspot is seen in weaving; much is made of Babbage

and Lovelace’s references to weaving in the design of their mechanical computer via the

industrial Jacquard device, but long before the Jacquard device was attached to looms

handweaving was already an computational art, just one performed by humans not machines.

Indeed, we could only automate weaving by simplifying it, in the process severing the

historical connection between humans and algorithms. This severing is the cause of the

blindspot; where historical context is lost, digital art seems like it is new, but is impoverished

without its original grounding in craft.

The live loom aims to confront this blind spot by eschewing mechanical automation in order

to expose the hands-on creativity of both programming and weaving, and bring them together

in a single system for exploring algorithmic patterns. It includes aspects which we more

conventionally think of in terms of computing, a programming language with a software user

interface. But truly, the handweaving loom interface and process is just as computational as

the software interface and process.

Encoding doubleweave

So far I have explored colour-and-weave and doubleweave structures through naive

improvisation, which seem magical when first encountered. Before concluding, I would like

to have a closer look in order to try to understand what is really going on. Let's start with the

following chart, to think about the possibilities offered by alternating colours of weft and

warp threads:

x o x o x o x o

x X ? X ? X ? X ?

o ? O ? O ? O ? O

x X ? X ? X ? X ?

o ? O ? O ? O ? O

x X ? X ? X ? X ?

o ? O ? O ? O ? O

x X ? X ? X ? X ?

o ? O ? O ? O ? O

19 Hicks, Aspray, and Misa, Programmed Inequality.

19

https://www.zotero.org/google-docs/?q9HsEm


The lowercase x and o represent the two colours alternating for the warp and weft, and the

central grid shows X for crossing points which always have colour x on top, O where colour

o is always on top, and ? where it depends whether the weft is over or under. This reveals a

clear constraint to the motifs that may be woven using alternating warp and weft colours -

revealing a grid of possibly connected points. Looking at the structure, we see a grid of Xs,

diagonally offset from a grid of Os. This reminds me also of double-weave, where two layers

of plainweave may be produced from a simple two dimensional pattern, one diagonally offset

from the other. From this, I realised that a doubleweave structure with alternating thread

colours, should result in differently coloured layers.

To test my naive thought, I did some weaving on the Live Loom, using the following code:

every 2 invert (offset 1 (intersperse down (cycle [up,

down])))

That worked pretty well! After weaving that for a while, I wanted to try swapping the two

layers. After a bit more thought, I tried simply swapping all the ‘up’s with ‘down’s, by adding

an invert instruction to the code:

20



invert $ every 2 invert $ offset 1 $ intersperse down $ cycle

[up, down]

I had some problems with my fabric unweaving, but with some adjustments, this worked very

well, with the bottom layer passing perfectly through the other to become the top layer. There

are no knots involved here, this is one fabric passing through the other.

Turning to the literature to try to understand this better, I came across the following from

Bauhaus artist Anni Albers:

“Double weaves have a special nimbus about them for reasons not clear to me. They are

thought to be intricate, hard to grasp, open only to advanced students. To my mind they are

simple to understand and can be handled by anyone with just common sense — which, I

admit, sometimes seems rare.” – Anni Albers

As someone struggling to comprehend doubleweave, I was a little taken aback by this

thought, that a structure that seems somewhat mystical for me, could be considered simple.

Perhaps this is the problem with coming at weaving from the naive perspective of computer

science. When looking at a binary grid it is too easy to think about weaving in two

dimensional terms, and it is only at the loom that the three dimensional interactions of

21

https://books.google.co.uk/books?id=j504DwAAQBAJ&lpg=PA32&dq=%22Double%20weaves%20have%20a%20special%20nimbus%22&pg=PA32#v=onepage&q=%22Double%20weaves%20have%20a%20special%20nimbus%22&f=false


weaving become simple, through embodied understanding. When dealing with such ancient

technologies, much humility is required on the part of computer scientists.

Still, there is something about the code I wrote to make the double weave. Here is the lift plan

created by the code:

As a naive weaver, the above structure does not, to my naive eyes, say anything about how

weaving it produces two separate layers of fabric. But then I realised that the code does!

Reading it backwards:

every 2 invert (offset 1 (intersperse down (cycle [up,

down])))

1. cycle [up, down] – this is the structure that each layer ends up with – the

simple repeated (cycled) up-and-down (also known as over-and-under) steps of the

plain weave

2. intersperse down – this puts an additional ‘down’ between each step, ‘making

room’ for the extra layer

3. offset 1 – this progressively offsets each row by one step, which provides the

diagonal movement in the structure. This does two things – it alternates between the

upper and lower layer on the warps, and also creates the single warp offset of the

plain weave

4. every 2 invert – every other row, this swaps the ups with downs, in effect

alternating between the upper and lower layer on the wefts.

22



I find this really interesting. I wrote this line of code with an entirely practical task in mind –

to produce the above binary grid of the weave structure in the clearest way I could think of.

In so doing, I’ve ended up with an abstract, linguistic description of the woven structure,

which actually opens a window for understanding the three-dimensional, woven results.

What’s also interesting is that now that I have better understood doubleweave, it allows me a

new way of perceiving colour-and-weave effects. I can now imagine two layers of textile,

which interweave to produce the effect. This is not of course one true way of seeing these

effects, rather one of many. But still, gaining this embodied, conceptual understanding

through weaving, has altered the way I perceive the world, a little bit.

Conclusion

In conclusion, we look back to history. What is the historical precedent of bringing together

live coding in the exploration of woven algorithmic patterns? The notion of algorithmic

pattern, as a symbolic transformation carried out during the process of making, seems to be

firmly rooted in textiles. Indeed knitting patterns routinely contain computational operations

such as logical branching and looping, with weaving drawdowns offering alternative

approaches to computation based on matrix multiplication and thread-based binary logic.

However the extent to which weaving drawdowns and knitting patterns are used as tools of

thought is unclear. The more visible purpose of these notations is mass communication

(commercial printing and distribution of knitting patterns) or relatedly, mass production

(control of industrial looms).

The problem is, that you do not need a notation in order to knit or to weave; experienced

craftspeople work through memory, and by ‘feel’ or tacit knowledge. Indeed

ethnomathematics began as a field exploring mathematics in craft cultures that do not have a

system of writing. Even if many experienced contemporary knitters and weavers make notes

while designing something new, these ad-hoc notations are not for sharing but for thinking

with, and so will rarely be preserved alongside the final, singular textile piece. A further

reason for not preserving a notation is that in a sense, a textile is its own notation. The

structure of some textiles is much more difficult to observe than others, but where it is

visible, a craftsperson can follow the threads, and in the context of their craft knowledge,

23



‘reverse engineer’ the pattern used to make them. So like the live code of the Live Loom,

these pattern notations are for thinking and generally not for recording.

So while it is important to recognise that algorithmic pattern builds on ancient technology, we

should also recognise what contemporary computers bring to it. By thinking with notation

while it is being automatically interpreted by a computer, we are able to work with it as a live

meta-material, even while physical material is being produced by that live interpretation. The

design of computer programming languages for creative use is about making notations that

are formal enough to be interpreted by a computer, yet flexible enough to support human

expression. The software industry has been led by the strong commercial motivations of

effortless mass production offered by digital media, but what we are concerned with here is

not reproducibility, but the less well appreciated affordance of code as a medium for thinking

through craft.

Ursula Franklin20 takes a historical view of technology, drawing a clear distinction between

holistic technologies in craft, and prescriptive technologies in large-scale production. A

handweaver is able to make decisions as they weave, in response to what they have already

woven. On a production line (and Franklin gives historical examples such as ancient vase

making, as well as in modern day industry), a culture of compliance is required, as individual

contributions must be carefully prescribed in order to fit together in the end. This is the

difference between ‘growth’ as a commercial imperative (potentially leading to unregulated

‘overgrowth’ and ultimately environmental destruction), and ‘growth’ as a means to follow

an idea to a unique outcome. Algorithms then have a very different part to play in holistic

rather than prescriptive technologies. In prescriptive technologies, the breaking down of

making processes into formalised tasks is necessary for automation and mass production of

quality-assured identical artefacts. In holistic technologies, algorithms instead allow us to

respond to artefacts as they emerge, by working with the structures of making.

References

Babbitt, Bill, Dan Lyles, and Ron Eglash. ‘From Ethnomathematics to Ethnocomputing:
Indigenous Algorithms in Traditional Context & Contemporary Simulation’. In
Alternative Forms of Knowing (in) Mathematics, edited by Swapna Mukhopadhyay
and Wolff-Michael Roth, 205–19. Rotterdam: SensePublishers, 2012.

20 Franklin, The Real World of Technology.

24

https://www.zotero.org/google-docs/?wj0fbV
https://www.zotero.org/google-docs/?wj0fbV
https://www.zotero.org/google-docs/?wj0fbV
https://www.zotero.org/google-docs/?wj0fbV
https://www.zotero.org/google-docs/?O5sAmT


https://doi.org/10.1007/978-94-6091-921-3_10.
Blackwell, Alan, Emma Cocker, Geoff Cox, Alex McLean, and Thor Magnusson. Live

Coding: A User’s Manual. MIT Press, 2022. https://doi.org/10.5281/zenodo.7383848.
Franklin, Ursula. The Real World of Technology. 2nd edition. House of Anansi Press, 1999.
Grünbaum, Branko, and G. C. Shephard. ‘Isonemal Fabrics’. The American Mathematical

Monthly 95, no. 1 (1 January 1988): 5–30.
https://doi.org/10.1080/00029890.1988.11971960.

Hall, Tom. ‘Towards a Slow Code Manifesto’. Blog. ludions, 1 April 2007.
http://www.ludions.com/texts/2007a/.

Harlizius-Klück, Ellen. ‘Weaving as Binary Art and the Algebra of Patterns’. TEXTILE 15,
no. 2 (3 April 2017): 176–97. https://doi.org/10.1080/14759756.2017.1298239.

Hicks, Marie, William Aspray, and Thomas J. Misa. Programmed Inequality: How Britain
Discarded Women Technologists and Lost Its Edge in Computing. 1st edition.
Cambridge, MA: MIT Press, 2017.

Mclean, Alex. ‘Algorithmic Pattern’. In Proceedings of the International Conference on New
Interfaces for Musical Expression, 265--270. Birmingham, UK, 2020.
https://zenodo.org/record/4813352.

McLean, Alex, Ellen Harlizius-Klück, and David Griffiths. ‘Digital Art: A Long History’.
Porto, Portugal, 2018. https://doi.org/10.5281/zenodo.2556604.

Menabrea, Luigi Federico. Sketch of the Analytical Engine Invented by Charles Babbage,
with Notes by the Translator Ada Lovelace. R. & J. E. Taylor, 1843.

Paul, Christiane. Digital Art. 1st edition. London ; New York, N.Y: Thames & Hudson Ltd,
2003.

25

https://www.zotero.org/google-docs/?wj0fbV
https://www.zotero.org/google-docs/?wj0fbV
https://www.zotero.org/google-docs/?wj0fbV
https://www.zotero.org/google-docs/?wj0fbV
https://www.zotero.org/google-docs/?wj0fbV
https://www.zotero.org/google-docs/?wj0fbV
https://www.zotero.org/google-docs/?wj0fbV
https://www.zotero.org/google-docs/?wj0fbV
https://www.zotero.org/google-docs/?wj0fbV
https://www.zotero.org/google-docs/?wj0fbV
https://www.zotero.org/google-docs/?wj0fbV
https://www.zotero.org/google-docs/?wj0fbV
https://www.zotero.org/google-docs/?wj0fbV
https://www.zotero.org/google-docs/?wj0fbV
https://www.zotero.org/google-docs/?wj0fbV
https://www.zotero.org/google-docs/?wj0fbV
https://www.zotero.org/google-docs/?wj0fbV
https://www.zotero.org/google-docs/?wj0fbV
https://www.zotero.org/google-docs/?wj0fbV
https://www.zotero.org/google-docs/?wj0fbV
https://www.zotero.org/google-docs/?wj0fbV
https://www.zotero.org/google-docs/?wj0fbV
https://www.zotero.org/google-docs/?wj0fbV

