
Then Try This • Algorithmic Pattern Salon

The complete guide to live-
coding visuals in Punctual
Joan Queralt Molina

Then Try This

Published on: Nov 11, 2023

URL: https://alpaca.pubpub.org/pub/lb3o0yti

License: Creative Commons Attribution-ShareAlike 4.0 International License (CC-BY-SA
4.0)

https://alpaca.pubpub.org/pub/lb3o0yti
https://creativecommons.org/licenses/by-sa/4.0/

Then Try This • Algorithmic Pattern Salon The complete guide to live-coding visuals in Punctual

2

Abstract
In this paper, the complete guide to live-coding visuals in Punctual is presented: a new documentation effort for

the visuals aspect of the Punctual live-coding language. This guide aims at documenting every detail of the

features offered by Punctual regarding the creation and modification of visual algorithmic pattern through live-

coding, some of them known only to the most active and up-to-date users of the language.

Introduction
Punctual is a language suitable for live coding both audio and visuals. Although it has a big creative potential,

it is a very little known and used language amongst the live-coding community.

One of the main reasons for this is the lack of a good, complete documentation of all the features the language

provides. Even though its author, David Ogborn, keeps an up-to-date reference of the language, there is still a

lack of explanations, examples, and ideas on how to use the different features it provides. In addition to this,

there are some powerful features that aren’t documented at all.

Here, the complete guide to live-coding visuals in Punctual is presented. This guide intents to make up for the

missing official documentation, providing a new source of information regarding the visual part of the Punctual

live-coding language, with plenty of examples and creative ideas, both for the beginner and the experienced

live-coder.

Also, my aim in this Algorithmic Pattern Salon is to offer an on-site workshop in Barcelona centered around

Punctual and its capabilities to create and evolve interesting patterns using the examples developed in the

aforementioned guide, which is still under construction.

About Punctual
From the official Punctual repository:

Punctual is a language for live coding audio and visuals. It allows you to build and change networks of

signal processors (oscillators, filters, etc) on the fly. When definitions are changed, when and how they

change can be explicitly indicated.

Punctual has huge visual capacities. Its strong points are:

Runs in a browser, no installation needed.

Fully integrated into the Estuary collaborative live-coding environment.

Compact syntax allows fast pattern creation and further modification.

Direct access to pixel coordinates allows the creation of patterns using any mathematical formula.

Low-level geometry changing functions lead to a great flexibility.

https://github.com/dktr0/Punctual
https://punctual.savamala.top/

Then Try This • Algorithmic Pattern Salon The complete guide to live-coding visuals in Punctual

3

Compared to Hydra (arguably the best known live-coding language for visuals), it has the following limitations:

Punctual was designed to be used mainly inside Estuary, a platform for collaborative live-coding. When

implementing such a web application, security is a major concern: the code a participant in a jam writes, is sent

and executed on the other participants computers. If not done right, this allows a potential attacker to run

arbitrary code there. Punctual avoids this issue by parsing all the code itself. Most live-coding languages are

extensions or libraries that can be added to a base general programming language (for example, TidalCycles

with Haskell, or Hydra with Javascript). On the contrary, Punctual is its own little, independent language, thus

avoiding the mentioned security problem as it only allows to write sound and visual code.

Disclaimer
Punctual is a personal art project by David Ogborn. He likes to keep absolute freedom on how or when

Punctual evolve, and that’s the main reason why he doesn’t usually accept contributions into the source code or

the official documentation.

The complete guide to live-coding visuals in Punctual is an unofficial document and can be made obsolete by

changes to Punctual at any time, even though I’ll try to keep it up to date. This is specially true for any

officially undocumented feature that may appear there.

The only official documentation is maintained by David himself on the Punctual git repository. Make sure to

check the README.md and REFERENCE.md files for up-to-date, official information on the project.

Flexible graphs arithmetic for even more creative possibilities.

Simple but effective modulation functions. Modulate everything.

Audio reactive visuals using frequency analysis, FFT (Fast Fourier Transform) and internal tempo.

Feedback allows building complex patterns using the last frame as source.

Capacity to use remote images and videos.

Can use webcam as source.

Easy to get help via the Estuary discord server.

Lack of high-level effects (saturation, pixelation, etc.)

Some mathematical skills are needed to build complex patterns using the low-level functions Punctual

provides.

Not easy to extend with your own functions.

Not very well documented (until now, I hope).

Not many people using it.

https://hydra.ojack.xyz/
https://estuary.mcmaster.ca/
https://github.com/dktr0/Punctual/blob/main/README.md
https://github.com/dktr0/Punctual/blob/main/REFERENCE.md
https://discord.gg/E9vuAUBAeW

Then Try This • Algorithmic Pattern Salon The complete guide to live-coding visuals in Punctual

4

Free software, live-coding, and documentation
There is an ongoing issue in the live coding community, and I would say that it extends to the whole free

software movement, that is neglecting documentation, resulting in limited accessibility and knowledge

preservation. In some cases, there are functionalities already implemented, but there may pass months or years

before it is truly made available to the users because of lack of documentation.

As an example, TidalCycles 1.7 introduced a feature known as "control buses" which allows to pattern effects

while a sound is playing. TidalCycles 1.7 was launched on January '21, and its author, Alex McLean, wrote a

message explaining them in the TidalCycles forum. Control buses didn't reach the official documentation until

October '22, that is more than one a half year later. This is not to be taken as a critique of the project's

documentation, but rather as an example of the challenge involved in keeping documentation up-to-date in an

open-source software project.

Reasons for the lack of user-friendly, comprehensive documentation are often constraints in time and energy,

but also that developers usually enjoy writing code rather than documenting it.

Fortunately, there are also very good documentation examples in the live coding and free software community.

For example, the free online book "Learn You a Haskell for Great Good!" is a quite good attempt at making a

difficult subject like Haskell (which is used to implement several live coding languages) more accessible. The

"Hydra Book" is another noteworthy effort in the live coding community (and one of the inspirations for

making this guide to Punctual), and resources like this partially explain the popularity of the Hydra language

amongst live coders. As a last example of good documentation in free software, I would like to point out the

absolutely delicious documentation of the Godot game engine (which is used to develop Animatron, a real-

time environment to create visual poetry), which is both understandable, complete, and up-to-date.

Documentation efforts like this one could help mitigate this problem and make craft live coding languages

available both for potential users and future researchers.

Patterns in Punctual
These are some of the pattern creation ideas that are (or will be) presented in the complete guide to live-coding

visuals in Punctual and which can be studied during the proposed workshop.

Many of these patterns are dynamic and best viewed pasting and running the code inside Estuary or the

standalone online Punctual.

For these patterns, I added a summary of the explanation in the guide (which can be a bit confusing, as here we

are skipping a lot of steps).

https://github.com/tidalcycles/Tidal/releases/tag/1.7
https://club.tidalcycles.org/t/testing-tidal-1-7/2792/3
https://github.com/tidalcycles/tidal-doc/commit/3ed3ef100bf15208d41076f6b20c1bfe49ea9662
http://learnyouahaskell.com/
https://hydra-book.glitch.me/#/
https://godotengine.org/
https://github.com/loopier/animatron-godot3
https://dktr0.github.io/Punctual/

Then Try This • Algorithmic Pattern Salon The complete guide to live-coding visuals in Punctual

5

Using Punctual to draw mathematical functions that create patterns

Here, we use Punctual capacity to define points to draw a mathematical function of the form y=f(x) . Our

function depends on the fragment coordinates (fx and fy) and include two oscillators to make the resulting

pattern evolve through time. Lastly, we add a fair amount of feedback to create a blurring effect:

point [fx, osc 0.09*cos (fx*fy*15*(2+osc 0.32))] >> video;
0.98 >> fdbk;

Deforming the aspect ratio through time

Writing a complete guide to something implies going through each and every function and possibility, and

sometimes this process leads to amazing discoveries.

The fit function modifies the aspect ratio of the display, and it’s often used to fit images into the screen, or to

avoid the distortion of some shapes (for example, circles) due to the screen being (usually) wider than higher.

But, under further examination of its possibilities, we see that fit can also be used in more creative ways. In

this example, we draw a pattern of circles, and then use fit to modify the aspect ratio as time passes, creating

an interesting effect. step modifies the number of circles through time, and spin is used to duplicate the

pattern, and spin each copy in opposite directions, to create a dynamic symmetry:

spin [saw 0.2, (-1)*saw 0.2] $ fit (8*osc (0.5*cps)) $ tile [4,step [1,4,8,16] $ saw cps] $ c
0.8 >> fdbk;

Figure 1

Then Try This • Algorithmic Pattern Salon The complete guide to live-coding visuals in Punctual

6

Using polar coordinates to create symmetries and complex patterns from
simple shapes

This example is a complex one, and it involves many of the ideas present in Punctual.

In the first line, r is defined, for each fragment, essentially as the fragment’s angle.

The angle is rescaled (with linlin) from a -π to π range to a 0 to 1 one, to adapt it to an intensity. Then we

add a saw oscillator (from 0 to 1) and finally keep only the fractional part (fract).

If we draw r the result is a kind of sonar effect, as the whiteness of a fragment only depends on the angle and

the time:

r << fract $ (linlin [pi*(-1),pi] [0,1] $ ft) + unipolar (saw 0.3);
r >> video;

Figure 2

Then Try This • Algorithmic Pattern Salon The complete guide to live-coding visuals in Punctual

7

In the next step, between is introduced. In essence, between receives two values and a graph and returns 1 if

the graph is between the two values, or else 0. Here, if the fractional part of a fragment’s radius is near enough

to the previously computed r for that fragment, the result 1, otherwise is 0. This creates a kind of spiral shape:

r << fract $ (linlin [pi*(-1),pi] [0,1] $ ft) + saw 0.3;
fit 1 $ between [r-4*px,r+4*px] (fract fr) >> video;

Next, we define e as this spiral, applying a zooming effect depending on an oscillator to make the pattern

more dynamic.

Figure 3

Figure 4

Then Try This • Algorithmic Pattern Salon The complete guide to live-coding visuals in Punctual

8

Finally, we use feedback to create the ending pattern. For each frame, we take the previous one, slightly zoom

it out, and rotate it to create the final result:

r << fract $ (linlin [pi*(-1),pi] [0,1] $ ft) + saw 0.3;
e << zoom (0.2 ~~ 1 $ osc 0.03) $ fit 1 $ between [r-4*px,r+4*px] (fract fr);
e +: (spin (-0.01) $ zoom 0.99 $ 0.98 * fb fxy) >> video;

Using low-level Punctual functions to recreate Hydra functions

Hydra is arguably the best known live-coding language for visuals. It is possible to recreate some popular

Hydra functions using Punctual capabilities.

In this example, c is an approximation to the osc() Hydra function, and the whole example is an

approximation to osc().kaleid(5).out() .

Note how the kaleid part is achieved using a combination of mathematical operations and the amazing

feature to remap coordinates with setfxy function:

c << move [(-1)*saw 0.1,0] $ tile [8,1] $ abs fx;
a << ft % (2*pi/5);
b << a + (-1)*pi/5;
fit 1 $ setfxy [fr*cos b, fr*sin b] $ c >> video;

Figure 5

Then Try This • Algorithmic Pattern Salon The complete guide to live-coding visuals in Punctual

9

Using audio reactive visuals to create patterns that change and adapt to
music

There are several ways to create audio-reactive visuals in Punctual: for instance, using oscillators whose

frequency is synchronized with the music tempo, or using the intensity of predefined audio frequencies bands.

In this example, we use yet another way of achieving audio-reactive visuals by using the Fast Fourier

Transform of the input sound (that is, the sound captured by a mic).

Here, we create some vertical lines using the Haskell shortcut for creating lists ([0.1,0.17..0.8]). This

vertical lines are then modified several times. First, for each fragment, we change its x-coordinate according to

an audio frequency that depends on the absolute value of the y-coordinate.

The linear rescale and other values are used to adjust the amount of deformation, mono is used to keep all the

image white even though it has two channels, and the [0.3,-0.3] part doubles the transformation creating a

left-right symmetry (this is the bit that creates two channels):

mono $ setfx [fx+[0.3,-0.3]*(ifft $ linlin [0,1] [0.1,0.5]
(abs fy))] $ vline [0.1,0.17..0.8] $ px*0.5 >> video;

Figure 6

Then Try This • Algorithmic Pattern Salon The complete guide to live-coding visuals in Punctual

10

After that, we apply a second transformation that simply rescales the y-axis. This is to better distribute

frequencies on the next step (try to remove the setfy (fy/pi) part to see the effect). Next, we apply another

transformation that interprets x,y Cartesian coordinates as r,t in polar coordinates, converting the vertical lines

into circles. fit is used to avoid getting ovals and not circles due to the aspect ratio. Finally, a bit of feedback

is added to enhance the result:

fit 1 $ setfxy frt $ setfy (fy/pi) $ mono $
setfx [fx+[0.3,-0.3]*(ifft $ linlin [0,1] [0.1,0.5] (abs fy))] $
vline [0.1,0.17..0.8] $ px*0.5 >> video;
0.8 >> fdbk

Figure 7

Figure 8

Then Try This • Algorithmic Pattern Salon The complete guide to live-coding visuals in Punctual

11

About this guide

I decided to write this guide after a year of participating on a weekly jam at the Estuary platform, and using

Punctual both in these jams and in several live performances.

Punctual is a somewhat low-level live-coding language, and has a very brief official documentation. While

learning it, I always missed some more explanations and examples on how to use the distinct features the

language provides.

Many of the examples presented in the guide are the result of conversations in the Discord’s Estuary server

with David Ogborn (Punctual’s author, who is extremely helpful and always answers my questions), and

Bernard Gray (who introduced me to the weekly jams and has been my partner in this journey).

The complete guide to live-coding visuals in Punctual is a work in progress and contributions are welcome. I

expect this guide will be far more evolved by the time the Salon takes place.

I’m an IT teacher with more than 20 years of experience, and I have written a lot of documentation and

tutorials for my students as well as many contributions in official product documentations, for example

TidalCycles.

This project is not part of a formal study on patterns or live-coding (hence the lack of references and formality

in some areas), and I’m not linked to any university or formal study group. I’m a live-coding enthusiast and

practitioner, and this guide is one of my contributions to the live-coding ecosystem in particular and free

software in general, to give something back to the community that so many wonderful things, both

technological and personal, has generously given to me.

Conclusion
In this document, I’ve presented for the first time the complete guide to live-coding visuals in Punctual, a

documentation effort which aims at creating both a full reference to the visuals aspect of the Punctual live-

coding language, and a compilation of creative ideas to help anyone interested in using it.

Also, I proposed the realization of a workshop in Punctual during the Algorithmic Patterns Salon using the

content of this guide, and focusing on the great capabilities that Punctual has to quickly create interesting and

evolving visual patterns.

https://www.youtube.com/watch?v=bQjTJcSeiHA&list=PLMBIpibV-wQLvP7jitjnV9E61DfV11235

