
Then Try This • Algorithmic Pattern Salon

Rhythm, Time and
Geometry
Xavier Góngora

Then Try This

Published on: Nov 11, 2023

DOI: https://doi.org/10.21428/108765d1.e65cd604

License: Creative Commons Attribution-ShareAlike 4.0 International License (CC-BY-SA
4.0)

https://doi.org/10.21428/108765d1.e65cd604
https://creativecommons.org/licenses/by-sa/4.0/


Then Try This • Algorithmic Pattern Salon Rhythm, Time and Geometry

2

Abstract
The rationale behind RTG, a Haskell library in early development, is presented. RTG aims to provide a tool for 

the generation and manipulation of rhythmic patterns in music using the concept of geometric structure and 

transformation as a core abstraction of its API.

Rhythm, Time and Geometry
RTG’s development is part of my PhD research into programming languages as musical instruments. My thesis 

aims to contribute knowledge about the relation between computational abstraction mechanisms and musical 

expressiveness in the case of the Haskell programming language, focusing on the musical domain of rhythm. 

This library is intended as a proof of concept and a tool to generate, transform and combine rhythmic patterns 

leveraging geometric methods.

Specification and Design

The motivation behind RTG comes from my mathematical background as an undergraduate [1]. My thesis 

advisor Micho Durdevich introduced me to Quantum Geometry:1 a mathematical theory that exploits the 

duality between symmetry and geometric structure, heavily influenced by the Erlangen Program (see next 

section).  Inspired by this idea and my practice with the Tidal Cycles live coding system, I came up with three 

design criteria for RTG’s specification which I’ll clarify in the next sections:

An Interpretation of Geometry

On this section I give a brief account on the concept of geometry that informs RTG’s approach. First, lets 

consider the Erlangen Program’s definition of geometry: 

Geometry is the science which studies the properties of figures preserved under the transformations of a 

certain group of transformations, or, as one also says, the science which studies the invariants of a group 

of transformations [2]. 

In these context a group of transformations is also called a symmetry group. The Erlangen Program establishes 

a duality between geometric structure (such as point configurations, metric and dimension) and algebraic 

structure (their associated symmetry groups). It is the heritage of Felix Klein, whose work [3] had a decisive 

1. Rhythmic patterns are generated in a declarative way from a collection of algorithms with geometric 

interpretation.

2. This patterns are organized into families represented by algebraic data types with binary operators defined to 

make them groups.

3. Library modules are divided into three classes: rhythm, time and geometry.
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influence on the mathematics and physics of the twentieth century [4]. From this a close relationship between 

the notion of symmetry and the abstract group definition comes forth and calls for any group to be thought as 

the set of symmetries of an implicit geometric object. What is formally defined as “the group structure” is, in 

broad terms, the ability of combining any two transformations to obtain another valid transformation (by means 

of a binary operator) and being able to revert the effect of any transformation as if nothing had happened.2

During the conception of my research project, the capacity of Tidal Cycles to express pattern combination 

(through the mini-notation and arithmetic operators)3 and the inherently geometric nature of euclidean rhythms 

(which can be modeled as point configurations on the circle maximizing an evenness criteria [5]) made me 

wonder about the inner geometry of rhythmic patterns when seen as transformations (group elements). In 

which cases do rhythmic patterns have a group structure? If none is found intrinsically, how can we provide it 

externally? Can this structure have relevant and coherent musical consequences and application? The fact that 

Tidal Cycles is a library of pure functions, as it is implemented in Haskell [6], gives some plausibility to this 

intuition, considering the set of functions f :: a -> b  (from some type a  to some type b ) can inherit a 

group structure in two general circumstances:

The most prominent component of a group is its defining operation. Each pattern arithmetic operator in Tidal 

Cycles , for instance *|  or |+| , refers to a binary operator of cycle-wise onset events, with patterns “1”  

and “0”  as identity elements respectively. The elusive property of the group structure is, in general, the 

existence of inverses. I took the task of identifying or assigning a group structure (by defining an operator that 

fulfills the group axioms) for each given set of rhythmic patterns. This poses an immediate question: What 

musical meaning does the inverse of a rhythmic pattern has? Is it to play it backwards in time?

Euclidean Rhythms

My test implementation for an euclidean rhythm group operation, <+>, uses modular arithmetic on their 

symbolic representation. So in this case the inverse (see line 55) is a kind of complement.

module Sound.RTG.Geometria.Euclidean (Euclidean, e, (<+>)) where 
 
import Data.Group 
import Sound.RTG.Ritmo.Bjorklund (euclideanPattern) 
 
data Euclidean = Euclidean Onsets Pulses Position deriving (Ord) 
 
type Onsets = Int 
type Pulses = Int 
type Position = Int 
 
instance Eq Euclidean where 

1. When its codomain4 b  has itself a group structure. In Haskell, this is equivalent to the type b  having an 

instance of the type class Group .

2. When a set of functions range over its own domain ( b == a  so that f :: a -> a ) function composition 

works as a binary operator with the identity function as the operation identity.
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stdForm (k, n, p) == stdForm (k', n', p') 
 
stdForm :: (Int, Int, Int) -> (Int, Int, Int) 
stdForm (k, n, p) = (k', n', p') 
  where 
    k' = k `mod` n' 
    n' = abs n 
    p' = p `mod` n' 
 
instance Show Euclidean where 
  show (Euclidean k n p) = show $ rotateLeft p $ euclideanPattern k n 
 
rotateLeft :: Int -> [a] -> [a] 
rotateLeft _ [] = [] 
rotateLeft n xs = zipWith const (drop n (cycle xs)) xs 
 
-- Combines two euclidean rhythms using modular arithmetic 
-- on the least common multiple of pulse granularity. 
(<+>) :: Euclidean -> Euclidean -> Euclidean 
Euclidean k n p <+> Euclidean k' n' p' 
  | (n /= 0) && (n' /= 0) = 
    Euclidean ((k + k') `mod` grain) grain ((position + position') `mod` grain) 
  | otherwise = error "No defined semantics for zero pulse euclidean rhythms" 
  where 
    grain = lcm n n' 
    position = 
      let scaleFactor  = grain `div` n 
       in (p `mod` n)   * scaleFactor 
    position' = 
      let scaleFactor' = grain `div` n' 
       in (p' `mod` n') * scaleFactor' 
 
infixl 5 <+> 
 
instance Semigroup Euclidean where 
  a <> b = a <+> b 
 
instance Monoid Euclidean where 
  mempty = Euclidean 0 1 0 
 
instance Group Euclidean where 
  invert (Euclidean k n p) = Euclidean (-k) b (-p) 
 
-- The interface function to construct euclidean rhythms 
e :: (Int, Int, Int) -> Euclidean 
e (k, n, p) = Euclidean k n p

Here euclidean rhythms are expressed by triplets of numbers e(k,n,p)  where k  is the number of sound 

onsets, n  is the underlying meter and p  the pattern position (considering rotations by that number of pulse 

steps).5  Then the operation works as follows: e(3,8,1) <+> e(4,13,3)   gives e(7,104,37) , e(7,12,5) 

<+> e(0,3,0)  gives e(7,12,5)  and e(7,12,5) <+> e(3,8,1)  gives e(10,24,13) . 

The associated patterns are generated by my implementation of the Björklund algorithm [5], which is also used 

to print them in stdout  as defined by the show function in line 24 of the previous code block.

module Sound.RTG.Ritmo.Bjorklund (euclideanPattern) where 
 
euclideanPattern :: Int -> Int -> [Int] 
euclideanPattern onsets pulses = bjorklund front back 
  where 
    front = replicate onsets [1] 
    back = replicate (pulses - onsets) [0] 
 
bjorklund :: [[Int]] -> [[Int]] -> [Int] 
bjorklund front back 
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| otherwise = concat (front ++ back) 
  where 
    newFront = zipWith (++) front back 
    newBack = diffList front back 
 
-- Auxiliar function for bjorklund 
diffList :: [a] -> [a] -> [a] 
diffList xs ys 
  | lx > ly = drop ly xs 
  | otherwise = drop lx ys 
  where 
    lx = length xs 
    ly = length ys

Unfortunately, even thought the <+> operation relates directly to the symbolic representation of the rhythms, 

elements of the general form e(0,n,0) , for any natural number n , all have the identity property for specific 

elements. This implies both the identity element and inverses are not unique, so the group axioms don’t hold. 

My attempts to solve this made me consider a series of possible strategies to test: have an exhaustive case 

treatment, using Haskell language extensions to allow modular integer data types, try non-standard euclidean 

rhythm interpretations to allow for negative values and the use of equivalence relations. In RTG I’ve taken the 

challenge of defining Group  instances for its rhythmic pattern data types.

Rhythmic Patterns Types

A low level computational definition of a rhythmic pattern is that of an isochronous interval set of pulses 

marked either as onset or rest. This is usually represented as a binary sequence [7]. As a first approach to 

implementation following the first design criteria, rhythmic patterns are generated with functions that produce 

such a binary sequence (like the euclideanPattern  function from the last section). 

In reference to my second design criteria, I will define types of rhythmic patterns based on the associated 

geometric/algorithmic methods. Euclidean rhythms, as shown in the previous section, are the paradigm of such 

 a rhythmic pattern type. Perfectly-balanced and well-formed rhythms as found in Xronomorph [8] are other 

types I’m currently researching. As a bonus, a collection of predefined patterns accessible by name 

corresponding to traditional rhythms and musical scales will be included.

The goal then is creating exciting and unusual patterns by means of operators related to the inner structure or 

representation of the rhythmic pattern types, by writing code such as:

Note how each rhythmic pattern can be thought as a pattern transformation by partially applying the operators.7

 

Each type of rhythmic pattern has a three part implementation, in reference to the third design criteria. First we 

have its geometric part, where it is defined as a algebraic data type with a Group  instance, using the syntactic 

and mathematical facilities of the Haskell type system [6][9][10]. Second, a rhythmic part where the algorithm 

play clap $ e(3,8,1) <+> e(5,7,0) <?> claveSon

play guitar $ e(7,12,0) # notes (japanesePentatonic <*> e(7,13,0)) 6

https://youtu.be/FgzLRzIM8rc?si=VrmG4jb7kTY0Q_bg
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called to produce the pattern is defined. The code excerpts from the previous section are the geometric and 

rhythmic parts for euclidean rhythms respectively. Third, the temporal part has to do with computational 

resources and the interaction with an audio server.

A time for everything 

As a music creation and experimentation tool, RTG will encode an exploration strategy of the space of 

rhythmic patterns [11]. At its core, this strategy depends essentially on the operator defined for every Group  

instance. The use of this group operations is the characteristic method in RTG for the discovery and derivation 

of new rhythmic patterns. My approach to their definitions is based on mathematically and musically informed 

heuristics. This might be summarized by the following principles:

An intrinsic relation between the pattern structure and operation can be showed by mathematical and syntactic 

arguments. On the other hand, simplicity is approached in broad and informal terms. The problematic principle 

is the second: what criteria will be used to account for musical significance? In the case of rhythm, G. 

Toussaint describes measures and properties that correlate with the perception of a "good rhythm", which is 

broadly characterized by adoption and ubiquity in cultural traditions [12]. This approach approach could be 

used to refine my group definitions and (in consequence) the exploration strategy. This poses an exciting 

landscape for experimentation, to be informed also by artistic and aesthetic considerations.

Interdisciplinary research into musical rhythm has focused traditionally on the purely temporal aspect, and this 

project expects to leverage the insights gained around it. I recognize that other dimensions of music, and the 

body as an active participant in its cognition and generation, play a crucial role in the perception of rhythm 

[13]. RTG approaches the temporal dimension of music using geometrical ideas as a means to generate and 

manipulate rhythm towards extending expressiveness at the pattern level. This is because I believe

“the description of music in terms of a transformationally oriented conceptual vocabulary will help 

evolve a more appropriate vocabulary and syntax for the description, understanding, and creation of 

experiences in time, for all self-referential temporal arts, of which music is a very pure example” [14].

Work towards extending this approach to other musical dimensions (such as pitch, dynamics and musical 

form) is on the roadmap. In the case of pitch one approach is to use the isomorphism between equally tempered 

scales and rhythmic patterns, understood as a binary sequences of isochronous onsets and rests as mentioned 

before.8

1. The definition should have an intrinsic relation with the rhythmic pattern structure or representation.

2. The results must be musically significant.

3. Be as simple as possible (Occam's razor).
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Final thoughts
The search for geometric structure in rhythmic patterns is informed by the Erlangen Program and the 

possibilities of pattern combination in Tidal Cycles. This is encoded into the definition of Group  instances. 

The inner structure of the rhythmic pattern types is of a more conventional geometric nature. Examples of this 

types, to be implemented in RTG, are euclidean, perfectly balanced and well-formed rhythms, all derived from 

particularly rich and simple principles that produce engaging patterns. Gathering all this, my intent is to further 

explore new strategies for pattern transformation.

A visual component might be missed from this discussion. This is intentionally so because so far I’m interested 

specifically with the interplay of structure and rhythm in a programming language context. In a live coding 

performance,  for example, an euclidean rhythm can be declared in code without being displayed visually 

without any apparent lose: what is gained is musical expressiveness of the pattern language. Of course, a visual 

representation of the pattern might be both instructive and fun.

This are the first steps towards making this library a platform for developing computational tools that leverage 

existing research on the geometric nature of rhythm and the algorithmic generation of rhythmic patterns. Much 

development work is still ahead towards a usable musical tool.

Footnotes
1.  Also known in the literature as non-commutative geometry. ↩

2.  In mathematics, a group is a non-empty set with an associative binary operation (in programming terms: 

a function of two values of the same type that produces a value of that same type), a unique (left and right) 

identity element and inverses for every element. See https://en.wikipedia.org/wiki/Group_(mathematics) ↩

3.  See https://tidalcycles.org/docs/reference/pattern_structure ↩

4.  In mathematics, the codomain or set of destination of a function is the set into which all of the output of 

the function is constrained to fall. See https://en.wikipedia.org/wiki/Codomain ↩

5.  They are used in Tidal Cycles to define onset patterns like this: d1 $ sound “cp(3,8,0)”. The 

corresponding euclidean rhythm can be represented by the list [1,0,0,1,0,0,1,0], where 1’s are onsets or 

triggers (in this case, of a clap sample), 0’s are rests, and the list elements represents pulses of the same 

duration within a cycle. ↩

6.  The hashtag symbol references Tidal Cycles syntax to pass control patterns. Note the combination of a 

melodic scale name with an euclidean rhythm. I’ll comment on this in the next section. ↩

7.  This is called currying. See https://en.wikipedia.org/wiki/Currying ↩

https://en.wikipedia.org/wiki/Group_(mathematics)
https://tidalcycles.org/docs/reference/pattern_structure
https://en.wikipedia.org/wiki/Codomain
https://en.wikipedia.org/wiki/Currying
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