[I I T T - T O N N R Y A - T e N e I

A A
bt et

;;HHHH
Fairmirmiim

LIVE
EDDIHG

user’'s manuagl

Alan F. Blackwell
Emma Cocker
Geoff Cox

Alex McLedan

Bt ot ot ot o] o o o o o
e i i il i

= =
A A A A A A A A N A A N A A A A A A A A A A A N A A A A A A A N A N A A A AN

Thor Magnusson

o

I I I I I M s o I e W W M W N s W A Ml M N N B N)
2 o (=] o (n] o (] o o (u] o Q (=] L] o o (=] (] o Ln] o o Q o o l
(ol (et (ke ok ok (et (o liet (e L et (e ot (a{at (e L ot (o ket et (ot el

Bienndende bbb b e

e

[Sy S Sy S S
=8 e et et [
AN NN
2 @) (=} Ae)} sy Ae]
el (ol et (et
. I e
o et et e et ek
b el o
5 fFefaireieirei

e B e A B e S T R T G S

l-
i
et e et et el b e bt et e bt et et e e

function newPattern () £
var type = document.querySelectorAll(’path’]), 1i;
currentScale = 1;
currentTime = setlntervall function() {
for (i = 0; i < type.length; ++i)
typelil .style. transform="scalel(’+ currentScale +’)°;
currentScale = Math.random() * 2;
>
>, 2000),;
3
newPattern()

ot ot ot ot ot fd fd o o o o o oo o fomd ot fd o] o
oo i i i i i i i i i

Live Coding

Software Studies

Lev Manovich and Noah Wardrip-Fruin, editors

Expressive Processing: Digital Fictions, Computer Games, and Software Studies, Noah Wardrip-Fruin, 2009
Code/Space: Software and Everyday Life, Rob Kitchin and Martin Dodge, 2011

Programmed Visions: Software and Memory, Wendy Hui Kyong Chun, 2011

Speaking Code: Coding as Aesthetic and Political Expression, Geoff Cox and Alex McLean, 2012

10 PRINT CHR$(205.5+RND(1)); : GOTO 10, Nick Montfort, Patsy Baudoin, John Bell, Ian Bogost,
Jeremy Douglass, Mark Marino, Michael Mateas, Casey Reas, Mark Sample, and Noah Vawter, 2012

The Imaginary App, Paul D. Miller and Svitlana Matviyenko, 2014

The Stack: On Software and Sovereignty, Benjamin H. Bratton, 2015

Coding Literacy: How Computer Programming Is Changing Writing, Annette Vee, 2017
The Software Arts, Warren Sack, 2019

Critical Code Studies, Mark C. Marino, 2020

How Pac-Man Eats, Noah Wardrip-Fruin, 2020

Live Coding: A User’s Manual, Alan F. Blackwell, Emma Cocker, Geoff Cox, Alex McLean, and Thor
Magnusson, 2022

Live Coding

A User’s Manual

Alan F. Blackwell, Emma Cocker, Geoff Cox, Alex McLean, and Thor Magnusson

The MIT Press
Cambridge, Massachusetts
London, England

© 2022 Massachusetts Institute of Technology

This work is subject to a Creative Commons CC-BY-SA license.
Subject to such license, all rights are reserved.

[@)By-sa |

The MIT Press would like to thank the anonymous peer reviewers who provided comments on
drafts of this book. The generous work of academic experts is essential for establishing the author-
ity and quality of our publications. We acknowledge with gratitude the contributions of these
otherwise uncredited readers.

This book was set in Stone Serif and Stone Sans by Westchester Publishing Services.
Library of Congress Cataloging-in-Publication Data

Names: Blackwell, Alan F, author. | Cocker, Emma, author. | Cox, Geoff,
author. | McLean, Alex, 1975- author. | Magnusson, Thor, author.

Title: Live coding : a user’s manual / Alan F. Blackwell, Emma Cocker,
Geoff Cox, Alex McLean, and Thor Magnusson.

Description: Cambridge, Massachusetts : The MIT Press, [2022] |
Series: Software studies | Includes bibliographical references and index.

Identifiers: LCCN 2022008717 (print) | LCCN 2022008718 (ebook) |
ISBN 9780262544818 (paperback) | ISBN 9780262372626 (epub) |
ISBN 9780262372633 (pdf)

Subjects: LCSH: Computer programming—Philosophy. | Agile software
development. | Creation (Literary, artistic, etc.) | Algorithms—Psychological
aspects.

Classification: LCC QA76.6 .B5794 2022 (print) | LCC QA76.6 (ebook) |
DDC 005.1301—dc23/eng/20220527

LC record available at https://lccn.loc.gov/2022008717

LC ebook record available at https://lccn.loc.gov/2022008718

https://lccn.loc.gov/2022008717
https://lccn.loc.gov/2022008718

Contents

List of Figures vii
Series Foreword xi
Acknowledgments xiii

Introduction to Live Coding: A User’s Manual
Partial Histories 13

Expositions 39

Notation 125

Live Coding’s Liveness(es) 159

Time Criticality in Live Coding 181

What Does Live Coding Know? 205

What Does Live Coding Want? 229

0 NGO L D WN =

Notes 245
Bibliography 295
Index 321

1

List of Figures

2.1 The original handwritten slub “Generative Manifesto” 18
2.2 The TOPLAP logo created by Adrian Ward 21

2.3 Algorave logo designed by David Palmer, a “spirangle” based on the three-armed
algorithmic structure of the Brigid’s cross 35

3.1a Rangga Aji 40

3.1b Rangga Aji 40

3.2a Alejandro Albornoz, a.k.a. co(n)de Zero, and Christian Oyarzan 42
3.2b Alejandro Albornoz, a.k.a. co(n)de Zero 42

3.3 ALGOBABEZ (Shelly Knotts and Joanne Armitage) 44

3.4a Rafeale Andrade 46

3.4b Rafeale Andrade 46

3.5 Jack Armitage 48

3.6a Computer artwork by Diego Moreira Guimaraes 50

3.6b Pietro Bapthysthe (Diego Dukdo and Berin) 50

3.7 Lina Bautista performing as Linalab 52

3.8a Renick Bell 54

3.8b Renick Bell 54

3.9 Ashlae Blum(e) 56

3.10 Alexandra Cardenas 58

3.11 Lucy Cheesman 60

3.12a Screenshot of Joana Chicau live coding visuals in a web browser 62
3.12b Joana Chicau 62

3.13 Periodic table sequencer and IBM six qubit frontend in SuperCollider 64

viii List of Figures

3.14a Malitzin Cortes, “Generative promenade or Nightmare catcher,” Modern Art
Museum, Mexico City, 2019 66

3.14b ACI Asia Culture Center. Foodhack 2019 ISEA Korea 2019 66
3.15a Mamady Diarra 68

3.15b Mamady Diarra 68

3.16 Live coding performance 70
3.17 Jason Freeman 72

3.18a Flor de Fuego 74

3.18b Flor de Fuego 74

3.18c Flor de Fuego 74

3.19 Sarah Groff Hennigh-Palermo 76
3.20 Haus++ 78

3.21 TidalCycles code 80

3.22a Timo Hoogland 82

3.22b Timo Hoogland 82

3.23 Miri Kaat 84

3.24a Livecoding jam with Abhinay Khoparzi, Akash Sharma,
and Joshua Thomas 86

3.24b Workshop on the Marching JS livecoding platform 86
3.25 Four time-lapse examples of live coded graphics 88
3.26a Melody Loveless and Caitlin Cawley 90

3.27 Mynah Marie, a.k.a. Earth to Abigail 92

3.28a MicoRex 94

3.28b MicoRex 94

3.29 Live coding and using charts for computer-aided composition 96
3.30a Livecoded Splatter in Livecodelab 98

3.30b Altered live coded piece 98

3.31 Punctual live coding language 100

3.32a Jonathan Reus 102

3.32b Jonathan Reus 102

3.33a Chemical Algorave 104

3.33b Chemical Algorave 104

List of Figures ix

3.34 Top image: Annotations in Gibberwocky show waveforms that are periodically
sampled to generate musical patterns. Bottom image: Multiple post-processing
shaders stacked in Gibber to create an abstract form 106

3.35 Screenshot from live coding performance INVOCACIONES 108
3.36 Screenshot of live coding with TidalCycles and Hydra 110

3.37 Kate Sicchio 112

3.38 th4 114

3.39 Anne Veinberg and Felipe Ignacio Noriega 116

3.40 Rodrigo Velasco (yecto) 118

3.41 Elizabeth Wilson 120

3.42 Anna Xambo6 122

4.1 Visualization of the eight-bit registers of a Z80 microchip as it performs simple
calculations, demonstrating the relationship between computation
and weaving 137

4.2 Melody Loveless performing as part of the New York DigiAna stream,
September 12, 2020 146

4.3 Orca live coding environment 147

4.4 “Keep Live Coding Live” sticker 156

Series Foreword

Software is deeply woven into contemporary life—economically, culturally, creatively,
politically—in manners both obvious and nearly invisible. Yet while much is written
about how software is used and the activities that it supports and shapes, thinking about
software itself has remained largely technical for much of its history. Increasingly, how-
ever, artists, scientists, engineers, hackers, designers, and scholars in the humanities and
social sciences are finding that for the questions they face, and the things they need
to build, an expanded understanding of software is necessary. For such understanding
they can call upon a strand of texts in the history of computing and new media, they
can take part in the rich implicit culture of software, and they can also take part in the
development of an emerging, fundamentally transdisciplinary, computational literacy.
These provide the foundation for Software Studies.

Software Studies uses and develops cultural, theoretical, and practice-oriented
approaches to make critical, historical, and experimental accounts of (and interven-
tions via) the objects and processes of software. The field engages and contributes
to the research of computer scientists, the work of software designers and engineers,
and the creations of software artists. It tracks how software is substantially integrated
into the processes of contemporary culture and society, reformulating processes, ideas,
institutions, and cultural objects around their closeness to algorithmic and formal
description and action. Software Studies proposes histories of computational cultures
and works with the intellectual resources of computing to develop reflexive think-
ing about its entanglements and possibilities. It does this both in the scholarly modes
of the humanities and social sciences and in the software creation/research modes of
computer science, the arts, and design.

The Software Studies book series, published by the MIT Press, aims to publish the
best new work in a critical and experimental field that is at once culturally and techni-
cally literate, reflecting the reality of today’s software culture.

Acknowledgments

This book is a product of slow development. The idea was first discussed by the authors
at the Dagstuhl seminar “Collaboration and Learning through Live Coding,” organized
by Alan Blackwell, Alex McLean, James Noble, and Julian Rohrhuber in 2013, and has
subsequently been developed over many years with different levels of intensity. The semi-
nar reflected on the emerging practice of live coding at that time to better understand
the potential of live coding for informing cross-disciplinary scholarship and practice
and connecting the arts, cultural studies, and computing. Importantly, from the out-
set, discussions and ideas were grounded in practice (including that of the authors),
and ongoing dialogues with the live coding community have been crucially important
throughout the development of our writing.

Many of the ideas first discussed at the seminar—including the way we think about
programming and wider cultural concerns around notation, liveness, and temporality—
have made their way into the book and have been further developed through vari-
ous publications, events, and conferences over the years, including, most notably, the
International Conferences on Live Coding held in Leeds, UK (2015), Ontario, Canada
(2016), Morelia, México (2017), Madrid, Spain (2019), Limerick, Ireland (2020), and
online from Valdivia, Chile (2021). Further early inspiration derived from research
projects such as Live Notation: Transforming Matters of Performance (2012), led by
Alex McLean and Hester Reeve working in dialogue with an international network
of live artists, coders, and theorists. Thanks go to Arnolfini in Bristol for hosting the
first Live Notation Unit event in 2012, and the connection to performance research
was emphasized in Emma Cocker’s essay “Live Notation: Reflections on a Kairotic Prac-
tice” (2013). The UK Arts and Humanities Research Council funded the Live Coding
Research Network between 2014 and 2016, led by Thor Magnusson and Alex McLean,
which ran three symposia on topics such as live coding and embodiment, live coding
in the arts, and live coding and education. The network also launched the International

xiv Acknowledgments

Conference on Live Coding series. We are also grateful to individuals who engaged with
the research project Weaving Codes/Coding Weaves (2014-2016). Ellen Harlizius-Kliick
and Alex McLean led this project, working with Dave Griffiths alongside Emma Cocker
as critical interlocutor, through workshops and residencies including the Centre for
Textiles Research, Copenhagen (October 2014); Centre for Participatory IT, Aarhus Uni-
versity (October 2014); Museum fiir Abgiisse Klassischer Bildwerke (Museum for Plaster
Casts of Classical Sculptures), Munich (May 2015); FoAM Kernow, Cornwall (October
2015); Institute for Music and Media, Dusseldorf (January 2016); Threads and Codes
symposium, Goldsmiths, University of London (March 2015).

These are a few of the many interconnections that have brought the authors of this
book together and the range of fields of expertise and practice they embody across
diverse fields—which broadly include computer science, critical design, software stud-
ies, computer music, performance writing, cultural studies, contemporary art, and
artistic research. Yet, of course, this collective effort extends beyond the authors alone
to the many conversations with the broader community of live coding, the interview-
ees who informed chapter 2, and the contributors to the expositions of practice in
chapter 3. The TOPLAP blog, wiki, mailing list, and forum, first established in 2004,
is key to the wider exchange of ideas, and more on this and the history of live coding
are discussed in chapter 2. Undoubtedly, the thoughts expressed in this book would
not be possible without this broader exchange of ideas across various international
networks, and we hope this is sufficiently acknowledged given the impossibility of
tracing their origins as such. In this connection we are especially grateful to the fol-
lowing: Sam Aaron, Robert Biddle, Andrew R. Brown, Maria Chatzichristodoulou, Luke
Church, Nick Collins, Alberto de Campo, Giovanni Fanfani, Yuen Fong Ling, Thomas
Green, Dave Griffiths, Mark J. Guzdial, Janis Jefferies, Jan Kees van Kampen, Shelly
Knotts, Adrian Kuhn, Annapurna Mamidipudi, Brigid McLeer, David Ogborn, Jochen
Arne Otto, Roly Perera, Hester Reeve, Julian Rohrhuber, Juan Gabriel Alzate Romero,
Uwe Seifert, Kate Sicchio, Andrew Sorensen, Andre Stitt, Giuseppe Torre, Renate Wieser,
Matthew Yee-King, and Ellen Harlizius-Klick. We would also like to thank again all the
live coders who contributed their expositions to chapter 3.

Many of the chapters are in some parts derived from our previously published papers,
reworked and revised as part of the collaborative writing process. We have acknowledged
these in the footnotes, and again key texts by the authors can be found in the full bib-
liography. We also acknowledge funding from the following sources that supported our
research toward this book: PENELOPE project, European Research Council (ERC) under
the European Union'’s Horizon 2020 research and innovation programme (grant agree-
ment No. 682711); Arts & Humanities Research Council (AHRC) Live Notation Network

Acknowledgments XV

grant; AHRC Live Coding Research Network grant (AH/L007266/1); AHRC Weaving
Codes, Coding Weaves (AH/M002403/1); INTENT project, European Research Council
(ERC) Consolidator Grant (grant agreement No. 101001848); AHRC Sonic Writing Fel-
lowship Grant (AH/N00194X/1); UKRI Future Leaders Fellowship Algorithmic Pattern
(MR/V025260/1); Aarhus University Research Foundation travel award (for funding
Geoff Cox’s research leave at the Computer Laboratory, University of Cambridge, in
2016); The Contemporary Condition research project at Aarhus University, made pos-
sible by a grant from the Danish Council for Independent Research (DFF-4180-00199).

Special thanks go to Doug Sery at MIT Press for his initial support of the project and
subsequently to Noah Springer, Lillian Dunaj, Christine Marra and Wendy Lawrence,
as well as to the anonymous reviewers who helped to sharpen our writing. We are espe-
cially grateful to be able to publish our work as an open-access publication under a
copyleft CC-BY-SA license that in so many ways reflects the ethos of the live-coding
community. Our institutions have been generous in providing financial support to
allow this to happen: School of Arts and Creative Industries, London South Bank Uni-
versity; School of Art and Design, Nottingham Trent University; Library of the Univer-
sity of Sussex; Deutsches Museum, Munich. Through this support we offer the various
chapters as necessarily works in progress, open to further timely updates, that reflect
the subject matter of the book as a dynamic form and practice.

The book is dedicated to the international community of live coders.

1 Introduction to Live Coding: A User’s Manual

So what do we mean by calling this book “a user’s manual”? This is no arbitrary choice
of terminology. A manual is a handbook, traditionally small enough to hold in the hand
(manus being the Latin word for “hand”), a support for action. The manual can be
repeatedly referred to—it is a source of information that can be applied or performed.
We hope that this book can serve as a source and inspiration for live coders and for
wider users of code. When it comes to computing (not least), the term user seems at first
to be rather limited and functionary, even when describing well-meaning notions such
as user-centered or user-friendly, which are both part of a more general shift toward
seemingly inclusive and participatory forms. However, as much as it is clear that the
user is open to subtle forms of exploitation,' we argue that the user might also be a
force for reinvention.

If you are expecting a conventional user’s manual, then put this book down. As the
title suggests, live coding is there to be used, not least to make visible the materiality
of the computer and the varied experience of its usage. It is a user’s manual of sorts,
but not in any conventional technical sense of being a prescribed set of instructions or
a how-to recipe book on how to do live coding. Indeed, there can be no conventional
user’s manual for live coding because there can be no universal way to understand or
practice live coding.” There is no universal language to code in, to start with. It is this
pluriversal capacity of live coding to resist or trouble any easy classification, categoriza-
tion, or explanation that we take as our provocation for (the impossibility, or at least
challenge of) writing this book.

Certainly, there is something perverse in writing a book about live coding. On the
one hand, books are not particularly well suited for registering the dynamic processes
of how writing and coding operate as distinctive cognitive practices, unfolding in time.
Even static code is poorly expressed once printed on the pages of a book—although it is
common enough for programming manuals and textbooks to do just this, encouraging

2 Chapter 1

the reader to read and doggedly type out the program in order to execute it. On the
other hand, the very constraints of the printed form allow for other critical reflections
to take place, while the textual qualities of writing code can be understood in the
broader context of linguistic form, both on the syntactic and semantic levels. Perhaps
the disjunction allows certain kinds of thinking to emerge that register how writing
and coding are particular technologies that generate particular readings and contin-
gencies. Accordingly, this first chapter operates as a broad introduction to live coding
alongside speculation on the inherent reflexivity of technological form, in which the
process of writing a book on live coding registers its own particular temporality.

What Is Live Coding?

Live coding has been described in terms such as writing software in real time, changing
a program while it is running, projecting the screen for the audience to participate in,
writing as an improvisatory practice, composing live using textual notation, changing
rules while following them, conversational programming (conversing with the computer
in its own native language), thinking in public, and creating and using bespoke systems
tailored for on-the-fly or just-in-time performance. However, as live coder David Ogborn
states, “To define something is to stake a claim to its future, to make a claim about what
it should be or become. This makes me hesitate to define live coding.”® Live coding
is a performance practice that operates as an adventure and exploration, deliberately
rejecting fixed definitions, remaining heterogeneous in nature, continually challeng-
ing its self-understanding through the practice of writing and rewriting—defining and
redefining—as a public performance. With no formal definition (or at least only one
that includes the possibility of its own redefinition) also comes some resistance to hier-
archical control—live coding cannot really become owned by established practitioners
or institutions. In asking “What is live coding?,” our intention is not to fix or define
but rather to explore how live coding opens up. Live coding is about people interacting
with the world, and each other, in real time, via code.* Live coding is about making
software live.

To make software live is not a brand-new proposition,® as over the past two decades
a worldwide live coding movement has emerged within a performance context that
throws new light on code-as-interface through an explosion of new tools and practices.
Live coding asks questions about liveness, inviting us to reflect on what it means to
be live—to have bodies, to communicate, to act. When we write code live, we adapt it
to our needs, and it adapts us in return. In this book we consider how the performance
practice of live coding has been enabled by an increased capacity for liveness within

Introduction to Live Coding: A User’s Manual 3

computer programming more broadly and in turn how the performance of live cod-
ing proposes new ways of operating, posing questions and challenges to some of the
underpinning values and ideologies of a wider computational culture.

Live coding involves a critical orientation toward the otherwise conventionalized
work of programming and software engineering.® For live coder Sarah Groff Hennigh-
Palermo, “This way of computing . . . helps me ‘unthink’ the engineering I do as my
day job. It allows for a relationship with computers where they are more like plants,
rewarding cultivation and experimentation.”” Live coding gives us a way to think oth-
erwise about coding—what it can be, rather than what it is. We might consider this
capacity of live coding as a technique of making strange (or defamiliarization), in the
sense first intended by the Russian literary theorist Viktor Shklovsky, as presenting
familiar things in a strange way in order to enhance apperception.® Live coding makes
software strange,” allowing us to see beyond routine practices and interpretations of code.
This book explores the wider context within which the performance practice of live
coding emerges while inviting reflection on the potential of what it might become.

Toward the end of the twentieth century, computers were becoming omnipresent
across many areas of arts practice, and communities of musicians and artists were begin-
ning to form around specific programming languages (notable are audio programming
languages such as Max/MSP, SuperCollider, Pure Data, and CSound). Artists were begin-
ning to use code as a creative material to express music, visuals, choreography, robotics,
video, and computer games. With code as the material and the laptop as a studio,
the traditional divisions between art, music, architecture, design, and game development
blurred, and educational institutions began to respond with new interdisciplinary
approaches to learning how to program computers. By the year 2000, prototypical
live coders began to arrive on the scene with a distinct approach to live programming,
straddling performance and creative computing. These coders asked: Why not simply
use the technology to show what we are doing? Why not show the screen and be more
transparent about how we are conversing with our machines in our own languages?

Live coding involves showing the screen or making visible the coding process as
part of a live performance. Broadly speaking, it describes the improvisatory real-time
composition of predominantly computer-generated audiovisual material, in which the
writing of code itself (or other executable instructions) is presented as a live event for
an audience. Alongside witnessing the coder engaged in the live act of coding (laboring
at their laptop), the code itself is also presented—typically projected—in real time as it
is being worked on as a visible part of the performance. In one sense the imperative to
show the screen might be considered a response to the audience’s frustration or need
to see something during coding performances, or even a way of foregrounding the

4 Chapter 1

technical credibility (even virtuosity) of creative coders. However, for many live coders
the practice of showing the screen is a critical gesture in its own right.

Despite reluctance to be constrained by definitions, one popularly cited formulation
is that live coding is best characterized as thinking in public, a phrase derived partly from
the etymology of programming as writing in public (Greek programma, from prographein,
“write publicly”). For some live coders, making these private intellectual and creative
activities publicly visible has a liberating effect, while at the same time introducing an
imperative of clarity within coding and turning each algorithm into artwork accessible
through simplicity of purpose and expression. Live coding unveils the underlying oper-
ational layer of activity beneath the more familiar, readable gestures of computational
performance. Commitment to a mode of thinking that is open and creative, especially
when made public, can thus acquire the status of a political act.

When interpreted in the context of cultural experience, live coding is not only fun-
damentally an “open work”'°—inasmuch as constituents of it are left open to the laws
of improvisation, chance, or intervention by the public—promising an aesthetic expe-
rience that matches the networked online community aspirations of the internet era
(specifically free software principles) but, significantly, a broader DIY, punk, and post-
punk ethos. The ambitions of such work are far-reaching for technologies that support
new styles of conversational programming—that are nonlinear and routinely interac-
tive, with software infrastructures that are not static monuments to the achievements
of the past but dynamic processes of engagement with the future. The temporality
that is implicit in technologies of control becomes subverted by software in the present
tense. The distinction between human action in the moment and systems-based plan-
ning has been a constant tension for the theorists of human-computer interaction. As
we explore in the later chapters of this book, the intersection of these modes of think-
ing with the socioeconomic and corporate infrastructure of the software industry is
unavoidably political.

The capacity of live coding for making visible counters the smart paradigm in which
coding and everyday life are drawn together in ways that become imperceptible. The
invisibility here operates like ideology, where lived experience appears increasingly
programmed, and we hardly notice how ideology is working on us.'" If we follow this
logic, then we do not use computers; they use us. Along with the disappearance of the
computer, as one of the tenets of contemporary interface design established through
technical programs of pervasive and ubiquitous computing,'? artist Olia Lialina identi-
fies that the user is disappearing as well—both the phenomenon and the term." This is
a problem for her (and us) inasmuch as Big Tech wants computers to be invisible so our

experience of using them becomes seemingly natural."

Introduction to Live Coding: A User’s Manual 5

Against received wisdom that would tend to be skeptical of the term user," Lialina
reclaims the possibility of what she calls the Turing Complete User, referring to users
who have more autonomy over computer use regardless of the primary purpose of an
application or device. As Lialina states: “Being a User is the last reminder that there is,
whether visible or not, a computer, a programmed system you use.”'® It is in this sense,
too, that we invoke the user in the title of this book.

Critical-Creative Contexts

Live coding emerges through a critical relation to the wider programming and software-
engineering context. However, it has also evolved in dialogue with the various creative
practices that find new expression in and through live coding, including choreography,
the visual arts, poetry, and especially music. In one sense, in the context of live coding,
music often becomes a metonym for other performance practices. However, this is not
meant to reduce or homogenize all other art forms, and within this book we explore
how ideas, practices, and theories emerging from wider interdisciplinary contexts open
up new ways of conceiving live coding’s distinctiveness. Still, the musical analogy war-
rants attention, for it invites particular consideration of the specific things that live
coding does.

For musicians in the classical notated tradition, every note they play is predeter-
mined by the composed score, to which live performance adds expressive adjustments.
In contrast, performers of jazz, folk, and rock music might follow a chord sheet but
often have the freedom to choose notes within those chords. Free jazz improvisers have
even more freedom. But a live coding musician is like an improvising composet, able to
transform the whole structure of the piece with a few keystrokes. The code is the score,
and the computer performs the music (in a sense) as the audience watches it being
written. The live coder breaks down and works outside the established dichotomies of
score/performance, composer/performer, and composition/improvisation.

The technologies of music-making are diverse in their acoustic, electronic, and digi-
tal forms. Established genres of recorded music control many layers of adjustment,
from basic acoustic vibrations to electronic filtering, sampling, mixing, and remixing
using tape loops, turntables, or disk drives. As digital alternatives have become available
at all of these different layers of sound production and manipulation, all are accessible
via code, turning the laptop into a kind of universal instrument whose own capabilities
and boundaries can in turn be redefined.

The capacity of live coding to have an impact on the production of music is clearly evi-
dent. However, we argue that all performance practices (including music) offer a special

6 Chapter 1

way of understanding software and that this has radical potential for all software—not
only for artists, their audiences, and art theorists but also for engineers, philosophers,
and activists. Scripting a performance is like programming a computer because both
involve ordering events in time. Music and dance are art forms concerned with move-
ment over time, from fluctuating waveforms or movements making up individual
actions to sequences of actions and the rhythmic patterns in which they play out.
Everybody knows that performances can be captured digitally, but it is not so widely
understood (or even accepted by computer scientists) that computers and algorithms
are fundamentally concerned with time or that using computers and making software
is a kind of performance in itself. In these terms, live coding helps us to gain new
insights about what software can be.

Programming languages, like languages in general, offer ways to describe things
compositionally, through a structured system of communication. Programming lan-
guages are often used to describe algorithms, but we can also describe algorithms with
human languages. Language comes alive through the body, through communication
with others, and through writing systems. In this book we argue that live coding can
transform human experiences of technology through these same connections.

Open Potential and Interdisciplinary Perspectives

As stated at the outset, this book is not a conventional user’s manual. The title bor-
rows from the combinatory literature of Georges Perec and his 1978 book Life: A User’s
Manual, a collection of interwoven stories based on the lives of the inhabitants of a
fictitious Parisian apartment block."” More than a passing reference to Perec, the experi-
mental writers group OuLiPo (Ouvroir de Littérature Potentielle, of which Perec was
part) draws attention to the careful, even programmatic, use of language and in turn
has helped us better understand our own endeavor of writing this book on live coding.
For example, the French term ouvroir refers to a place where people work together on a
difficult task, deriving new techniques; more precisely, the example is given of a sewing
circle, which we believe is a good metaphor for the practice of live coding. The lit-
térature potentielle of OuLiPo speaks of a search for new forms of writing, as Perec states:
“We call potential literature the search for new forms and structures which may be used
by writers in any way they see fit.”'®

We see live coding (and our attempt to write with it as much as about it) operating in
this spirit, as a search for new arrangements of form and structure while staying mind-
ful of the formal rules and constraints associated with computing in dialogue with
creative practices such as music, choreography, and the visual arts. By appropriating

Introduction to Live Coding: A User’s Manual 7

Perec’s title, we indicate our ambition to open up the forms and structures of live cod-
ing to close description, analysis, and experimentation, revealing it to be in a perpetual
state of potential transformation into something else. For us, live coding has some-
thing of this sense of reinvention, an ability even to unsettle the relationship between
code and life—and that is what this book is about.

The composition of the authorship of this book also reflects OuLiPo’s interdisciplin-
ary perspective (which in its case included mathematics, computer science, and literature)
by bringing together different disciplines and orientations within a shared project. Our
own writer’s group embraces diverse practices and theories, as well as conventions and
histories, drawn from music, interdisciplinary design and software development, software
studies, and network culture alongside areas of artistic research, contemporary art, and
performance. Live coding operates at the threshold of these different practices and disci-
plinary perspectives, and we wanted to reflect that in the style of the book itself. We write
from within the field of live coding, as practitioner-scholars writing from the insider’s
perspective, from the viewpoint of live coding performers and software innovators, as well
as through wider interdisciplinary scholarship that considers how live coding relates to a
wider contextual field, including situating live coding within philosophical, political, and
performance-based practices. Our interdisciplinary exchanges have not only happened on
the page and in the process of writing the book. Rather, over several years (and through-
out the duration of the book’s development) we have talked, discussed, and explored live
coding in dialogue with various research projects, networks, and conferences, as well as
through live encounters within numerous festivals and algoraves.'’

Each and every chapter has been coauthored in various ways. Certainly, this has
been a complex undertaking. At times, different contributing voices become tangible
through a perceived shift in style or semantics or through the meeting of different—
even seemingly incompatible—references or ideas. Over many years we have gradually
gathered fragments of thoughts and ideas. In places, the transition from one voice to
another might appear smooth and seamless; elsewhere, the reader might notice the
sudden break or change in tack. Through this approach to coauthoring the book, we
draw attention to the etymological relation of text to textile: from the Latin textus, liter-
ally “a thing woven,” or from texere, meaning to weave or interweave, to braid or fit
together.”” In doing so we reflect the collaborative principles of live coding itself and
the desire and potential therein for bringing different systems into dialogue. In writing
together we have also become attuned to the potential of writing the book itself as an
improvised, collaborative performance.

Live coding necessarily draws attention to the writing machine—including laptops,
source code editors, and so on—and the material production of text or code, book, or

8 Chapter 1

even computer hardware.”' It is also connected to the body of the author and reader
(producer, worker), and it becomes clear that writers, readers, texts, coders, machines,
and codes all have bodies and that these become operative under particular sociotech-
nical conditions. Informed by the practice of live coding—and our skepticism about
some of the conventions of academic writing and its singular authoritative voice—in
the process of writing this book we began to explore some aspects of liveness, experi-
mentality, and reflexivity within our collaboration.* To focus attention on the perfor-
mative dimension of live writing as analogous to live coding calls into question some
of the static assumptions of communicative forms and instead foregrounds material
conditions and their effects, as well as the wider sociotechnical infrastructures through
which they are served. It is also worth remembering that all writing is technology, and
live writing, like live coding, is able to activate slippages of meaning and ultimately
demonstrate how writing subjects and objects become thoroughly entangled.”

In writing this book, we also reflected on the jumbled experience of time that the
writing of books conduces.* By writing about writing as we write, we identify a parallel
to the way that live coders edit code as it runs. In this way, examining live coding and
live writing together usefully confuses any strict definitions between them, as well as
between the act of writing and its execution, allowing us to rethink some of our preex-
isting notions of notation, liveness, temporality, and knowledge production, which in
turn become the focus for the various chapters (4-7, respectively) of this book. While
we have only gestured toward this experimental and reflexive attitude toward writing
about live coding, it does suggest another book yet to be written (and one at times we
thought we were writing here). For now, the book that you are reading takes a more
conventional form.

Navigating the Book

The structure of the book is broadly bipartite. The first part is more practice focused,
offering an account of the origins, development, and aspirations associated with the
evolution of live coding alongside presenting documentation and examples of live
coding practice. The second part is more speculative and conceptual in its register,
allowing space for discussion of the many ways live coding reflects and informs wider
cultural and political concerns. In this sense we identify live coding as a critical techni-
cal and aesthetic practice, able to activate sensemaking across interdisciplinary fields.*
Chapter 2, “Partial Histories,” informed by research interviews and primary sources,
focuses on the history of live coding, taking our point of departure from the TOPLAP
manifesto of 2004.%° Far from the intention of establishing a canon here, we take live

Introduction to Live Coding: A User’s Manual 9

coding to be a way of addressing some of the assumptions of historicism more broadly
and of the progressive technological development that we develop in later chapters. It
highlights some of the wider conditions from which live coding has evolved, including
the recent history of computer-based music (since the 1980s) and the interest in digital
culture within art schools around the mid-1990s, alongside an increased wider cultural
interest in creative coding (since the turn of the millennium). We acknowledge various
technological catalysts and precursors to live coding, the influence and significance of
specific individuals and collaborations, and the importance of receptive and proactive
venues and festivals in creating a context for the emerging practice of live coding. We
chart the arc of this burgeoning practice from its inception and instituting moments
to its becoming established within various institutional frames while arguing how the
insurgent and irreverent imperative of live coding has continued to thrive through
the new genre of algorave.

The third chapter, “Expositions,” presents live coding in its singularity, exposing the
specific approaches through which live coding manifests within a diversity of different
practices. Forming a parallel history of the field, it includes diverse voices from live cod-
ers themselves as reflective performers and innovators. Occupying a central position
within the book, the focus on distinctive practices spans the different waves of live cod-
ing, from the more tentative explorations preceding the formation of TOPLAP in 2004
to the focused campaigns of popularizers and the cultural transformation of live coding
as it has spread around the world.” It includes both the creators of new live coding tools
and those who have developed artistic practices through using those tools. We do not
attempt to synthesize a single narrative for this chapter but provide an opportunity
for the diversity of the field of live coding to be represented through individual voices,
through rich accounts of practice itself. We refer to these presentations of practice as
expositions, a term from the field of artistic research for describing how the epistemo-
logical contribution of a given practice is exposed, often through a combination of
the practice, its documentation, and writing.® The epistemological dimension of live
coding and the question of “what live coding knows” is further explored in chapter 7.

Following the practice-based expositions is a shift in orientation toward the wider
issues that live coding raises in relation to notation, liveness, time, and knowledge, as
well as its future. Chapter 4, “Notation,” focuses specifically on the notational nature
of the live coding performance. The generative relationship between a notation and
what is notated is what drives generative creativity in the live coding field. The percep-
tual gap between the notational map and the generated territory allows the live coder
to reach beyond their imagination and work with notation not to efficiently realize
a ready-made idea but to follow an idea to see where it takes them. The function of

10 Chapter 1

notation in live coding can be seen as threefold: it is the syntactic structure read by
the language interpreter that executes the program, it is the action or movement of the
performer that is projected to the live audience, and it is the music itself as notated by
the live coder. This chapter unpacks these ideas further, exploring how the momentary
nature of a live coder’s notation might be closer to speech than to text. Or rather, live
coding practice finds itself caught between two worlds, as it is too ephemeral to be score-
based culture and yet too centered on text to be oral culture. The focus is therefore not
only on the notation but what is notated and the activity of notation—the nature of
the deterministic algorithms that live coders work with and the dynamic ways in which
they are crafted. By examining how live coding challenges tensions and dichotomies
such as those between determinism and liveness, between musical improvisation and
composition, and between oral and written culture, we find new approaches to notation
as a dynamic, live medium.

This quality of liveness is explored further in the chapter 5, “Live Coding's
Liveness(es).” It explores the implications of live coding for our understanding of live-
ness by asking: What kinds of liveness are produced within live coding, and with what
effects? What does this indicate about the relations between technology, performance,
and even life that live coding suggests? The chapter draws on different theoretical ideas
of liveness and performativity to demonstrate that live coding does not sit easily within
any singular theoretical framework: its liveness must be apprehended from more than
one epistemological and ontological perspective in which the hierarchy of liveness con-
ceived in computational terms collides with a wider discourse on embodiment, vitality,
and performativity. The chapter explores how complex conceptualizations of liveness are
negotiated through the human-machine relations central to live coding, in turn raising
wider contemporary concerns about what it means to be alive, operative, and actively
present in the world. Live coding presents a direct challenge to the conventional under-
standing of liveness and to the lived experience of time, both with respect to the role of
the programmer and user and, crucially, through the way the machine understands time,
whether in a wiki edit, a keystroke log, a page render, or a print queue.

Chapter 6, “Time Criticality in Live Coding,” explores how live coding activates
the present in all its complexity. The time criticality we speak of points to this inher-
ent processuality of the computer and programming to perform and express dynamic
operations in the present: it is both critical on a technical level and on a conceptual
level and moves toward criticality in the sense that we emphasize practices that actual-
ize potentialities in real time rather than simply expose problems. Across the chapter
as a whole, live coding offers a complex multitemporal human and more-than-human
experience of time—human and machine times become entangled, both in and out of

Introduction to Live Coding: A User’s Manual 11

what we conventionally understand as time. In exemplifying the coming together of
multiple temporalities and different types of time, the practice of live coding contrib-
utes toward new understanding about our contemporary temporal experience. More-
over, how does live coding itself temporalize and actively produce—activate, intervene
in, invent, and reorganize—as much as reflect different experiential temporalities? Thus,
we not only acknowledge that time plays a crucial role in live coding in terms of the
unfolding of time in its performance—as in a timeline or score—but also demonstrate
how time can be manipulated, and indeed produced, through such means.

In asking “What Does Live Coding Know?,” chapter 7 explores the engineering con-
texts in which the necessary technical knowledge has been generated and applied and
the contexts of creativity where know-how from several perspectives crosses the bound-
aries of computer science, craft practices, and artistic research, as well as the sense of
indeterminacy that is inherent to the medium. Our intention is to explore beyond the
knowledge needed to practice live coding, extending to the knowledge that is acquired
or that emerges, or is even assumed, in and through that practice. Live coding comprises
technical, artistic, and philosophical inquiry, for it not only draws on and from specific
fields of knowledge but, as a practice, asks specific epistemological questions. Here, we
can draw on the interdisciplinary work of Philip Agre, whose concept of a critical techni-
cal practice pertains to the philosophical enterprise of artificial intelligence as pursued
through technical work,?” where critical and cultural theories intervene in engineering
practices as a way of inviting reflection on the underlying assumptions and ideologies
within technological design. Live coding presents a challenge to our categories of knowl-
edge, in both its scholarly and technical-professional realizations. Of specific interest
for us is the way in which it operates at the threshold of different species of knowledge,
troubling its classification. In posing the question “What does live coding know?,” the
intention is to expand beyond an anthropocentric and culturally specific understand-
ing. Here, what live coding knows is not synonymous with what the live coder knows
but rather refers to the epistemological potential of the practice itself, including the
multiple knowledges arising in and through the collaboration with machines. Our sug-
gestion is that the live intra-actions of programmer, program code, and the practice
of coding defamiliarize knowledge production and expose how making and thinking
might escape familiar forms and normative applications of inscription practices.*

The final chapter, “What Does Live Coding Want?,” shifts the focus from what live
coding knows to the question of what it wants—inviting dual reflection on both the
agency of code and the future of live coding. This chapter initially draws out some
of the political implications relating to the operations of algorithms. Algorithms,
which increasingly manipulate and control our social systems, are not as fixed or as

12 Chapter 1

deterministic as they might first appear but rather are emergent and reactive phe-
nomena, subject to constant live updates. They are also part of larger sociotechnical
assemblages and infrastructures that are constantly evolving and subject to variable
conditions and contingencies that include the lively contributions of coding or writ-
ing. Perhaps what is at stake here is a deeper exploration into the ways that space and
time are constructed when coding and writing and maintaining the best practices of
the arts and the academy in the face of corporate data infrastructures. Live coding is
an open-ended performative process that attempts to reject deterministic or previously
held certainties over the ways that meanings are generated and disseminated. This
provides a counterspace for agency in human and nonhuman entities that is produced
through a fuller understanding of the operations of the material-discursive systems that
we are written and coded into. In the case of writing this book, we acknowledge that to
some extent it also writes us.*'

Live coding conceives of technology as fluid phenomena open to transforma-
tion and exploration, including through the live redesign of instruments or the live
rewriting of scores. Live coding rejects easy definition, continually challenging its
self-understanding through the practice of defining and redefining itself as a public
performance—in the way a Wikipedia entry invites rewriting. Such a mode of writing—

"32_expresses the ability to move, change, and explore the

done with “shaky hands
unknown. Writing has no beginning or end in this way as it opens itself up to its
relations with existing works and its future extensions. The issues that we engage in
this book in reference to live coding continue to be developed through ongoing work,
inasmuch as all books are provisional and open to multiple interpretations as well as
further modification.* Thus, any sense of a beginning or end to this introductory chap-
ter (and the book more broadly) is only a temporary holding position in lieu of further
thoughts and future developments, which ultimately serves to demonstrate how read-

ers might become writers.

2 Partial Histories

Instead of attempting to establish a historical canon for live coding, this chapter recog-
nizes that live coding is a way to question assumptions of historicism, as well as live-
ness and temporality, which are addressed in later chapters." We approach the idea of
partiality through the concept of Donna Haraway’s situated knowledges: we do not adopt
a universal perspective but recognize that knowledge is produced in lived realities and
in doing so makes our partiality transparent.” So in calling this chapter a partial history
(or rather, histories in the plural), we draw attention to how histories are created. As
such, we urge readers to remain skeptical of how we have pieced together some of the
details of the development of live coding and how we have made sense of events after
the fact. Going beyond the contingency of any history (given the fallibility of human
memory, the instability and partiality of events, and the complexity of emerging dig-
ital narrative forms and the forces that shape them), a straightforwardly historicist
approach must be questioned in relation to the fundamental liveness of live coding.’?
The narrative history of live coding that we have assembled in this chapter has there-
fore been prepared in a manner that echoes live coding itself, using a process that has
been collaborative, experimental, improvised, and reflective.* Moreover, the text that
you are reading now draws on the subjective experiences of key practitioners and their
memories—embracing the stories and the falsehoods—and was developed through a
series of interviews back in 2016 with those whom we considered to be key figures
in the live coding community at the time. They included some of the authors of this
book, who were interviewed by other authors.® Based on these interviews, the individu-
als who appear in the following sections (with initials that will be used when referring
to our thematic analysis) are AA: Amy Alexander; AC: Alexandra Cardenas; AdC:
Alberto de Campo; AM: Alex McLean; AS: Andrew Sorensen; BatMan: Benoit and the
Mandelbrots; DG: Dave Griffiths; DO: David Ogborn; GW: Ge Wang; JA: Joanne Armit-
age; JR: Julian Rohrhuber; KS: Kate Sicchio; MH: Mike Hodnick; NC: Nick Collins;® SA:
Sam Aaron; SK: Shelly Knotts; TM: Thor Magnusson. Our choice of interviewees takes

14 Chapter 2

in perspectives of the genesis of the live coding movement in Europe and the US and
subsequent import and development in Mexico and elsewhere. We are alert to ques-
tions of diversity in choosing such a sample. Women were engaged in live coding from
its inception, although in smaller numbers than men. We note in particular that this
list reflects the limited ethnic diversity (at least in Europe) of the early community.” As
live coding techniques have recently found wider adoption, this picture has somewhat
changed, as reflected in the variety of expositions shared in the following chapter.

Live Coding Narratives and Nonlinear Histories

Before reflecting on the specific histories of live coding, it is worth briefly considering a
wider contextual frame for creative coding, specifically in relation to computer music,
from which live coding initially emerged. The history of computer music extends back to
1956 when Lejaren Hiller and Leonard Isaacson began working on their Illiac Suite, apply-
ing Markov models to generate a musical score. In the following decades, composers and
computer scientists wrote bespoke software for score generation and synthesis, but none
produced sound in real time, due to the technical limitations of that generation of com-
puters. A key trajectory is mapped through the series of languages, known as MUSIC-N,
created by Max Mathews, which along with its descendants, such as CSound, provided
the theoretical foundations for much of the software described in this book. By the late
1980s when the period covered by our interviews starts, computer music was primar-
ily based on sequencing the notes played by hardware synthesizers and samplers rather
than real-time software synthesis. Commercial software design was aimed at simulating
recording studios and was rarely used in real-time performance. Software enabling musi-
cians to write algorithmic music, such as Max and Open Music,® developed at IRCAM
(Institute for Research and Coordination in Acoustics/Music) in Paris, started to emerge
from research and academic environments, but it was in the 1990s that mass-produced
computers began to be fast enough for real-time audio processing. Programming lan-
guages with a focus on real-time audio processing, such as Miller Puckette’s Pure Data and
James McCartney’s SuperCollider, were able to directly synthesize sound from algorithms
and filter and combine incoming audio streams and/or stored samples.” Later in this
chapter, we focus on the pivotal moment at which these technologies intersected with
interactive approaches to programming. While real-time audio processing still required
relatively expensive computers, by the mid-1990s, individuals were beginning to be
able to do this type of work on high-end laptops. By the late 1990s, a new electronic
music scene had emerged where people would bring laptops into clubs and pubs, plac-
ing themselves (or being placed, as performers) on the stage with their laptop.'’

Partial Histories 15

In most of these early performances, there was little to see: audiences simply watched
a performer sitting on stage without visuals or any gestural movement. The initial idea
of the practitioners was that—as electroacoustic musicians had claimed three decades
earlier—people would get used to the nonevent, or rather the nonvisual event, of the
performance. However, the tendency of the audience to keep watching for something,
even if just the movement of a mouse, made it obvious that there was space for other
things to happen on stage. As video projectors became cheaper, new responses to this
opportunity came within reach, including VJing and abstract visualization of the audio
signal.'' Most performance venues became equipped with projectors set up to project
onto the stage. Although there are precedent cases of live coding in the arts—such as
the Hub in music, Larry Cuba in the visual arts, and diverse experiments with live pro-
gramming or interactive programming in computer science—it is really the foundation
of early 2000s electronic music that becomes the context of live coding’s growth as an
artistic form, which now includes music, visual arts, dance, and other creative forms.

The 1980s: A Generation of Geeky Artists
The gradual expansion of computer-based electronic music (since the 1980s) and
increased cultural interest in creative coding (since the turn of the millennium) both
helped to shape the wider conditions from which live coding evolved. However, the
personal histories of prototypical live coders reveal a distinctive pattern, which often
combined early exposure to technological development and access to creative contexts
within which to experiment. The first generation of live coders were children of the
late 1970s and 1980s, for whom the computer was both a promise and an obligation.
Where they could afford them, their parents bought home computers, but the potential
of these machines was often just out of reach. Time spent with ZX Spectrums, TRS-80s,
CP/M microcomputers, and Commodores was often grabbed from an older sibling or
shared with an eager parent. There were few computer games, so you had to write
your own. But with no internet to turn to for advice, the text laboriously copied out of
magazines seldom worked. The opportunities for creative expression were often little
more than simple beeps or colored blobs on the screen.'* The “random” [RANDOMIZE,
or RND] key word was an essential escape from complete boredom.

Schools in the 1980s were also investing in Apple IIs and BBC Micros, but creative
coding was not the first priority in computer science education. Given the relatively
limited resources, education in computing was task focused rather than imaginative

or playful.”® Whether or not they had creative experiences with computers, many live
coders did have creative childhoods. Many headed for careers in the professional arts

through early promise as instrumental musicians, dancers (KS), or composers (SK, MH).

16 Chapter 2

Some won prizes, formed bands, and performed as soloists on piano (NC, AA), trumpet
(AS), or percussion (AC) or switched to guitar (TM, AdC) or saxophone (SA) so they
could form rock and jazz bands. AM used school equipment to experiment with a
drum machine. At the same time, some also followed more stereotypically technical
interests. SA became obsessed with programming his graphing calculator, JR coded on
paper because he didn’t have a computer, and DO, whose home computer had limited
software, wrote C code in notebooks with a pencil until his parents finally bought a C
compiler for his birthday.

This ensemble of geeks and musician-technologists did not meet each other,'* or
learn there were others like them, since children had no access to the internet in the
1980s. DO remembers a 1985 computing camp where the most memorable experi-
ence was not writing code but sending his first email. This “weird” combination of
interests—both art and technology—was sufficiently unusual that without access to
others via the internet, live coders often grew up working in isolation from a wider
sense of a community of practice. It was years before AS (based in Australia) could
experience related work. Even after hearing of the London live coding scene and recog-
nizing that it was the same thing he was attempting, he could find only a single online
video of live coding (Ge Wang and Perry Cook using ChucK).

The Art School Shapes Digital Culture

For some future live coders, it was a challenge to find contexts for combining the tech-
nical and the creative.'® However, their musical and performance talent led many of
this first generation of live coders to art school, and they all remember the tutors who
first inspired them to experiment with generative systems and digital media. Notable
figures who influenced and inspired our nascent live coders included Larry Cuba and
Morton Subotnik at the California Institute of Arts (AA), William Latham’s recruitment
of students from Bournemouth University (DG), Martin Robinson at Middlesex Univer-
sity (NC, TM), Perry Cook and Paul Lansky at Princeton University (GW), Juan Reyes at
the University of Colombia (AC), Kurd Alsleben at the Hochschule fiir bildende Kiinste
in Hamburg (JR), Andrew Brown at Queensland University of Technology (AS), Helmut
Dencker at the Hochschule fiir Musik in Graz (AdC), and Scott Wilson at the University
of Birmingham (SK). It was clear to both tutors and students that conventional scripted
notation, in the digital era, might be a mechanical constraint foreign to the creative
opportunities of free improvisation and the process-based and experimental arts. As
the first digital generation of students were exposed to these practices, they and their
tutors seem to have realized together that code could be treated as either a medium, a
craft material, a composition system, or a performance notation—principles that were

Partial Histories 17

increasingly explored in degree show pieces or in new societies, collectives, and collab-
orations between tutors and students. Most of this activity took place in graduate arts
programs around the mid-1990s, where access to sufficiently advanced hardware and
software, and much time for exploration at hand, enabled tutors to teach experimental
classes in electroacoustics (for musicians), computer music (for sound engineers), or
interactive and media art (for graphic designers).

Slub

One of the most influential of these collaborations was between two people who ini-
tially met as students: Adrian Ward, when completing a hybrid arts-computing degree
(bachelor of science in media lab arts), and Alex McLean, who was frustrated by the
lack of creative opportunity in his applied computing course (bachelor of science in
computing), both at the University of Plymouth in the UK (where Geoff Cox was also
teaching). Ward had concentrated on the subversion of standard digital media tools in
his program AutoShop (1999), which offered a satirical commentary on the functional-
ity of Adobe’s Photoshop.' Ward and McLean'’s shared desire for programming to be a
creative activity was revived when they met again after both had graduated and moved
to London.

They became regular collaborators, exploring the relationship between packaged
and improvised software in “The Generative Manifesto,” a precursor to the TOPLAP
manifesto that was offered to the public in a Perl community event at the Institute of
Contemporary Arts (ICA) in London in September 2000, during which Ward shouted
the manifesto over a soundtrack of rhythms synthesized by McLean. The two soon
gained an international profile, with Ward winning the software art prize at Transme-
diale in 2001 for his next project Autolllustrator (2001) and McLean winning the same
prize the following year for forkbomb.pl (2002)—a simple script that would visualize
the process of crashing the machine it was run on."”

The Generative Manifesto
Performing under the name slub,'® Ward and McLean’s “Generative Manifesto,” as pre-
served in the handwritten original reproduced here, advocated:
1. Attention to detail—that only hand-made generative music can allow (code allows you to
go deeper into creative structures);
2. Realtime output and compositional control—we hate to wait (it is inconceivable to expect
non-realtime systems to exhibit signs of life);
3. Construct and explore new sonic environments with echoes from our own. (art reflects
human narrative, code reflects human activity);

18 Chapter 2

THE Gerae@Alie wANE e ®
| AHpadion e dotuil
M%MM%‘WA‘W— KL (e okl
(i o g o 2 MR
it 08t ok b

WL

WS b onCtvalle trpeck donmalbi Y
AR ot A Sl "

-

3 wmshuct ged um i FoAll SR vt
tdanes

Wikl awr AL

(ovt reflechs o wacadive, coar vidledts
bmtoan o

R A

Wi it paree bidy ' fas v
L B Sl e A oy

Rl Aoy g g e

(n&l‘_’ws\v\ip co-‘ssl’t b JM{(A by Wose vl o

Figure 2.1
The original handwritten slub “Generative Manifesto.”
Source: From Adrian Ward and Alex McLean.

4. Open process, open minds—we have nothing to hide (code is unambiguous, it can never
hide behind obscurity. We seek to abolish obscurity in the arts);

5. Only use software applications written by ourselves—software dictates output, we dictate
software (authorship cannot be granted to those who have not authored!)

The ICA event where this manifesto was delivered marked McLean and Ward's sec-
ond public performance as slub, and it occurred well before they had contacted other
live coders. Indeed, although the two had explored live coding in passing at an event
earlier that year,"” on this occasion they ran preprepared scripts from the command
line, rather than writing their code live. They were concerned with real-time control
and with asserting their creative agency as programmers writing code to make music,
but several years passed before they put these two motivations together to become an
exclusively live coding collaboration. As others report, despite all the ingredients being

Partial Histories 19

there, it seems that the significance of live coding, which seems obvious in retrospect,
only really became apparent when communities of practice began to form around it.

The Foundry and Public Life

The growing accessibility to the internet was a significant factor through this period,
allowing experimenters to make contact with communities of practice beyond their
local environment. KS reports looking for dance on the internet, SA was searching for
other calculator hackers, and AM was building online communities via bulletin board
systems. However, the live environments of many venues and project spaces, as well as
conferences and festivals, are what really provided a frame for making connections and
sharing practice. The emergence of live coding was shaped not only by the evolution
of the live coder as a performer but in relation to an audience that participates in the
way that thinking-in-public is made visible through coding. Around the turn of the mil-
lennium, with the first internet boom, code was slowly entering public consciousness,
as code became popularized in advertisements, on television, in magazines, and on
film through design tropes such as CamelCase typography, arrays of zeros and ones as
binary signifiers of the digital, and the code aesthetic of the Matrix movies.

The generative music scene in London gathered an audience through some remark-
able venues, including the Foundry pub in Hoxton and the literally underground
Public Life, an ex-public lavatory in Spitalfields curated as an experimental venue by
Siraj Izhar from 2001 to 2004.”” The Foundry pub was set up with the support of Bill
Drummond, well known for his pop music disruptions as part of the KLE. Drummond’s
poster titled “I COULD FUCKIN’ DO BETTER THAN THAT” was hung in the Foundry
as an open invitation to artists to participate. Many experimental events, including
the first slub performances, were held here. Public Life was run as an open arts collec-
tive with a similar focus on experimental digital culture, with the following rules of
operation: “1. not to solicit activity, all activity had to be self-initiated, volunteered or
uninvited” and “2. not to say no to anything, reject anything but attempt accommo-
dation in some way.” The program of events in late 2002 included Plug and Play nights,
open-source occasions where participants were invited to “bring data/bring laptop/
tech.” Adrian Ward and Alex McLean performed as slub, while Nick Collins appeared
as 3play with John Eacott and Fabrice Mogini, students working with Martin Robinson,
who was teaching one of the few SuperCollider-based courses at Middlesex University
at the time. Other Middlesex students organizing events at Public Life included Thor
Magnusson and Enrike Hurtado, who organized events where people would use the ixi
instruments they made as part of their master of arts degree.

20 Chapter 2

Partial archives of the Public Life calendar show the determination of those in the
scene not to take themselves too seriously. Variously described as “dead-eyed genera-
tive techno boffins *slub*” and “stub et de I'autre coté de slab puisque slub existe,” slub
and colleagues reveled in a geeky aesthetic that both acknowledged the dubious fashion
status of this underground genre and exemplified the art-school habit of tongue-in-
cheek “pretension” (typified by the use of manifestos). Although showing screens to
the audience was central to the ethos of both Public Life and the “Generative Mani-
festo,” it was not presumed that the performers would necessarily be writing code at
the event. AM remembers that his code was generally prepared in advance and that
Adrian Ward, who did write code while performing, did not make a big thing of it.

Read_me/Runme

The London scene around the Foundry and Public Life and the “Generative Manifesto”
of slub and their software art prizes at Transmediale were all political in their moti-
vations and intentions. This spirit of art activism linked up with an international com-
munity associated with the Read_me festivals curated by Olga Goriunova and Alexei
Shulgin and their online incarnation at the runme.org website. After an initial event in
Moscow in 2002, the second Read_me/runme was held in Helsinki in 2003. Amy Alex-
ander and Alex McLean were invited to contribute to the selection and curation of the
festival, working closely together in AM’s development of the art database runme.org
(with conceptual input from Pit Schultz, Florian Cramer, Matthew Fuller, the Yes Men,
and Thomax Kaulmann). Runme.org became central to the Read_me festival concept
as a communal catalog, submission system, and repository for executable open projects
that recognized the emergent practices of coders.” The third iteration was in August
2004, where Read_Me 2004 (hosted by Aarhus University) was immediately followed
by a joint Runme/Dorkbot City Camp hosted by the Jutland Academy of Fine Arts,
attended by many of the live coding community and for some (such as DG) their first
experience of writing code in public. Amy Alexander, Alex McLean, Nick Collins, and
Fredrik Olofsson memorably took to the stage all at the same time, with an array of
projectors showing all of their screens.

The Birth of TOPLAP

The specific term live coding appears around the year 2000, although it must be recog-
nized that the terms live programming and live coding were being used interchangeably
at that time. It seems there was something in the air, with a number of disconnected
developments—the release of early versions of the Just In Time programming library
for SuperCollider in 2001 by Julian Rohrhuber, experimental programming workshops,

Partial Histories 21

the first performances from collaborative ensembles such as slub and Powerbooks_
UnPlugged, the release of the ChucK on-the-fly language by Ge Wang in Princeton®—
all leading up to the establishment of the international live coding community TOPLAP
at the Changing Grammars symposium convened by Renate Wieser and Julian Rohrhu-
ber at the HfbK in February 2004.

Changing Grammars was a politically engaged festival of code-as-art, a “live audio
programming symposium,” whose advertised purpose was recognizably to discuss live
coding as we know it today: “Some computer languages allow changing a running pro-
cess on the fly by rewriting the code that defines it. Applied to computer music this
means that one can write sound compositions while they are already playing.”** The
symposium brought together different forms of collaborative art. It was inspired by live
improvisation in clubs, the conversational art by Antje Eske and Kurd Alsleben, network
music as pursued in the work of Alberto de Campo, and a radicalization of open source as
collective thinking—the name encapsulating the ambiguous power of grammatical law.

Changing Grammars was the watershed moment of live coding, as the meeting at
which TOPLAP was formed and immediately after which the TOPLAP manifesto was
first drafted. The (temporarily named) Temporary Organisation for the Promotion of
Live Algorithm Programming was constituted, continuing as an online wiki and email
discussion list that included additional software artists and live coders outside Europe,
such as DG, GW, and AA. The logo, designed by Adrian Ward, symbolizes both the
centrality and provisional/reversible status of the laptop as the name then given to an
electronic music genre that was both technologized and commoditized.

The TOPLAP Manifesto

The TOPLAP manifesto itself is as “temporary” as the organization and has only ever
been published as a draft, in 2004. The authors of the manifesto insist that it was never

Figure 2.2
The TOPLAP logo created by Adrian Ward.
Source: Wikipedia, “ToplapLogo,” last modified April 20, 2011, https://toplap.org/wiki/ToplapLogo.

https://toplap.org/wiki/ToplapLogo

22

Chapter 2

(and shouldn’t be) really finished—and of course that TOPLAP is a temporary organiza-

tion.” The manifesto was originally shared as an openly edited wiki document, settling

on the following draft during the space of a year.”® The manifesto states:

We demand:

Give us access to the performer’s mind, to the whole human instrument.

Obscurantism is dangerous. Show us your screens.

Programs are instruments that can change themselves.

The program is to be transcended—Artificial language is the way.

Code should be seen as well as heard, underlying algorithms viewed as well as their visual
outcome.

Live coding is not about tools. Algorithms are thoughts. Chainsaws are tools. That’s why
algorithms are sometimes harder to notice than chainsaws.

We recognize continuums of interaction and profundity, but prefer:

Insight into algorithms

The skillful extemporisation of algorithm as an expressive/impressive display of mental
dexterity

No backup (minidisc, DVD, safety net computer)

We acknowledge that:

It is not necessary for a lay audience to understand the code to appreciate it, much as it is not
necessary to know how to play guitar in order to appreciate watching a guitar performance.

Live coding may be accompanied by an impressive display of manual dexterity and the glo-
rification of the typing interface.

Performance involves continuums of interaction, covering perhaps the scope of controls
with respect to the parameter space of the artwork, or gestural content, particularly direct-
ness of expressive detail. Whilst the traditional haptic rate timing deviations of expressivity
in instrumental music are not approximated in code, why repeat the past? No doubt the
writing of code and expression of thought will develop its own nuances and customs.”’

With clear influence from “The Generative Manifesto” of McLean and Ward, per-

haps its most famous injunction is “Show us your screens”—a mantra of the live coding

community.”® However, even this central phenomenon of the live coding movement

is contested. Some regard the showing of screens as explanatory (GW) or didactic (SA),

as simply a way of sharing their way of making music (for slub), while for others the

gesture is underpinned by the materialist principles of granting access to the means of

production, as discussed in later chapters of this book. The founders of TOPLAP were

fully aware of the irony of an improvised culture being documented and systematized:

the assertive style of the manifesto is parodic and, like all manifestos, algorithmic in

Partial Histories 23

the sense of being program-like and able to generate new sociotechnical forms. In this
sense it follows a long tradition of technology-based manifestos and declarative calls to
action.” However, our own interviews (AM with AdC) acknowledge that “even if the
TOPLAP manifesto obviously is intended as tongue-in-cheek, it did have an undercur-
rent of real ambition.”

Catalysts and Precursors

So far we have focused on the genesis of the TOPLAP live coding community between
2000 and the present day, in recognition of the rich development of music and arts
practice that came out of physical and online meeting points. It is also important to
recognize precursors and catalysts, where individuals or small groups engaged in activi-
ties and developments that could be conceived of as live coding even if these people
never viewed their practice as such or found value in the term live coding.

Interactive Programming

The propagation of the Forth programming language through the 1970s was a signifi-
cant event in the development of interactive programming for real-time applications,
as the language architecture allows operations to be interactively (re)defined while the
program is running, with a core that is unusually fast and lightweight.*® In 1979 Doug
Collinge created the Moxie language for timed procedures, delivered originally as a
Forth package and later reimplemented by Roger Dannenberg in a C version called
Moxc,* described as an “integration of procedural and declarative score-like descrip-
tions of interactive real-time behavior.”** Dave Anderson and Ron Kuivila began working
together in 1984, initiated by Kuivila asking if it would be possible to keep access to the
Forth outer interpreter while running his concurrent thread package. It is explorations
in this style that have enabled live coding as we understand it now, and according to the
TOPLAP wiki, Kuivila is the person responsible for the first known performance of what
we would now recognize as live coding, at STEIM Amsterdam in 1985.

SuperCollider

If the formation of TOPLAP was a pivotal moment in the crystallization of live cod-
ing as a performing arts genre, the next most significant occasion (though earlier in
the timeline) may well be a workshop that was presented at the International Com-
puter Music Conference (ICMC) in 2000 by James McCartney, author of the Super-
Collider music programming language.*® McCartney’s work influenced many of those
we interviewed. Indeed, it is hard to ignore the number of live coders whose first expe-
riences of coded music came from tutors who were the early adopters and teachers of

24 Chapter 2

SuperCollider. Even TOPLAP owes its existence to McCartney’s work; SuperCollider was
the main programming language used at the Changing Grammars meeting.

Versions of SuperCollider were already in circulation before 2000, and some schools
were using those early versions. But McCartney’s workshop at the International Com-
puter Music Conference 2000, where he demonstrated fluent synthesizer program-
ming in a text-based language, made a huge impact on many of those who attended.
His workshop involved a live software demonstration, not a musical performance, but
many of those present recognized the potential for using code as a musical instrument,
rather than as a means to build instruments.

The basic operating principles of SuperCollider are squarely in the tradition of the
MUSIC-N family of digital synthesis systems, continuing Max Mathews’s original
invention of a modular system of software unit generators that are connected into a
logical network. Conceptually, this is the same operating principle as modular analog
synthesizers, which are connected into a network using patch cables, and of the Max/
MSP language, which visualizes the patch cables as connecting lines in an on-screen
diagram. McCartney'’s first version of SuperCollider provided a text programming inter-
face to this underlying model, but Version 2 of SuperCollider transformed the program-
ming experience by changing the style of control language to that of Smalltalk—the
innovative language developed by Alan Kay and others at Xerox Palo Alto Research
Center (PARC) that underlies a recent resurgence of interest in “live programming”
within the software engineering research community.**

It is notable that Collinge’s original Moxie referenced Smalltalk, and also the Simula
language that had inspired it, relating the event-simulation functionality of Simula to
a causal model of music in terms of processes and events, which he felt would become
the foundation of a far more powerful descriptive model. Certainly, for Kuivila, Super-
Collider was the first environment that he believed had retained the interactive pro-
gramming quality of Forth while allowing much richer programming abstractions.

Immediately, SuperCollider 2 encouraged live experimentation. In particular, from
the moment when the interpreter remained usable during synthesis, it allowed for a
redefinition of functions at runtime (in the same way that words could be added at
runtime to the Forth dictionary). These functions could be picked up by sequencing
unit generators like Spawn, and Kuivila created a TSpawn function that introduced the
ability to trigger this update. This was used in the early versions of Rohrhuber’s work
on proxy systems.

It is within the SuperCollider community that we see terms such as live program-
ming and code live used around 2000-2001 by Julian Rohrhuber and Fabrice Mogini,
respectively. Indeed, at the launch of the Morpheus CD-ROM (a disk that contained a

Partial Histories 25

runtime version of SuperCollider with generative music pieces by five composers) in
2001, Mogini was live coding in a London Shoreditch nightclub, projecting code onto
the wall and writing SuperCollider patterns in a specific graphical user interface system
he had built.*

It is no coincidence that these developments were all taking place within Super-
Collider 2. Its extreme conciseness, together with its repository of interesting exam-
ples that could be easily rewritten and combined in live textures, foregrounded code
as public artistic expression. Its design prompted users to run different parts of their
code concurrently, changing parameters continually as the music evolved. However, a
considerable advance for live coding came with Rohrhuber’s introduction of proxies,
which made it possible to rewrite any component of the program at runtime. Instead of
preparing the parameters for live interaction, the whole programming activity became
an integral part of the running program. The proxy system was also used in improvisa-
tion to share and access code running on multiple computers, enabling the live laptop
network music performances of the PowerBooks_UnPlugged ensemble.*

The Growing Community

The pioneering years of live coding in the early 2000s were followed by accelerating
growth of the live coding community. It has now grown to include so many prominent
individuals that it would have been impossible for us to interview them all or even
to fully document the expanding circles of those involved. In the months and years
immediately after the formation of TOPLAP, those who attended and participated in
the early events (such as DG) developed their own tools and performance practices.
Increasing coverage in forums enabled a wider network of explorers to identify their
own work as live coding, as when AS saw a Slashdot article by AM on hacking Perl and
recognized that his own “live” exploration within a read-eval-print loop could be per-
formed in public, leading directly to the first live coding performance in Australia by
Andrew Brown and Andrew Sorensen (as aa_cell), at the Australasian Computer Music
Conference in June 2005.

As academic music departments started to incorporate live coding (or at least, fur-
ther attention to SuperCollider) into their curriculum, they created a generation of
performers who had an established framework within which to explore. AC was already
familiar with computers as media-processing tools but had not considered herself to
be a coder until Ernesto Romero taught a live coding class in Mexico in 2009, leading
to her own first public performance in 2010. SK had already used digital music tools
in high school and found that Max/MSP and SuperCollider were part of her under-
graduate curriculum in 2006 and 2009, respectively. For her, coding in itself was not a

26 Chapter 2

conceptual commitment but a tool available as part of the repertoire of free improvisa-
tion practice, in which she saw little real distinction between digital and analog syn-
thesizers. She did not perform explicitly as a live coder until 2013 but quickly became
a core member of the UK community.

JR and AdC were visiting professors in Karlsruhe who taught SuperCollider in 2009
to students at the Institute for Music Informatics and Musicology, including Juan A.
Romero, Holger Ballweg, Patrick Borgeat, and Matthias Schneiderbanger, who then
formed the live coding collective Benoit and the Mandelbrots. They say that their first
performance later that year was memorable for being even “more nerdy than Kraftwerk”
because they had not yet acquired laptop stands and were obliged to sit on the stage
while typing.

Although more could be said about the institutional grounding of live coding
through educational establishments, including the teaching of environments such as
SuperCollider, Pure Data, Max/MSP, CSound, ChucK, Hydra, and TidalCycles and the
widespread rollout of Sonic Pi into schools as well as universities (currently approach-
ing its two-millionth reported download), much of the community growth and educa-
tion has been through workshops organized by art institutions, media labs, universities,
and various festivals. As examples, John Eacott organized the SuperCollider summer
school at Westminster University in the early 2000s; Nick Collins, Fredrik Olofsson,
and Sergio Luque gave SuperCollider workshops; Thor Magnusson and Enrike Hurtado
organized ixi workshops on audiovisual programming across Europe; Bruno Ruviaro
and Fernando Lopez-Lezcano at CCRMA at Stanford, and a large open-source Pure Data
community, with people such as Derek Holzer, Gunter Geiger, and Hans Christoph
Steiner, was active in open-source audio programming education. Various institutions,
organizations, and collectives were instrumental in this spreading of skills—notably,
Centro Multimedia, Centro Nacional de las Artes in Mexico, the Studio for Electro-
Instrumental Music in the Netherlands, Access Space in Sheffield, and 1'ull cec in
Spain, which organized a coordinated program of SuperCollider education through a
series of workshops at Hangar Barcelona.”’

The mixture of curiosity, enthusiasm, and engagement shown by technical audi-
ences has become a staple of live coding performance. At programming language and
tool conferences, especially, there is a long-standing tradition of live demos exhibiting
the convenience and efficiency of new technologies by showing that sophisticated
results can be achieved in view of the eyes of the audience.® A second wave of live
coders, such as MH and SA, extending the technical tools developed in earlier live cod-
ing experiments, were already familiar with this kind of code performance before they
started to explore musical ideas of their own. For more technical audiences looking

Partial Histories 27

to develop their own skills and understanding, knowing how the tools work and how
effects are achieved is greatly valued, leading to performances that often consist of a
lecture or seminar followed by music improvised in the moment.

Live coding has also extended beyond the performance of music and projected visual
effects to explore the potential of code in association with dance or poetry. KS is a dancer
and choreographer who had used digital tools such as Isadora and Processing to create
dynamic stage sets and had an intuitive understanding that these were themselves a
kind of choreographic notation. After meeting AM, she began to explore the intersec-
tions between long-standing questions of notation and improvisation in dance (to be
discussed further in chapter 4) and the potential of live code as an improvised score.

As with any performance or musical genre, we stress the point that live coding is
a community construction. Performance implies an audience; it is a fundamentally
social enterprise. The tools used in live coding may be constructed in private, and live
coders develop their skills with personal preparation, but experiences of community
were central to the development of everybody we interviewed.

For those live coders educated in a Western art school tradition, ensemble perfor-
mance and studio settings are everyday routines. Just as with the art-rock bands of the
1960s and 1970s, several prominent live coding groups developed directly from groups
of art-school contemporaries, including Benoit and the Mandelbrots and the Public
Life regulars 3Play. However, the cultures of education in technical practice are very dif-
ferent. In comparison to art schools, there is far less expectation that computer science
and software-engineering students will work closely with their peers on an everyday
basis. As a result, the communal experience of live coding, for these individuals, was
challenging but transformative. SA discovered a completely different kind of creative
experience through a classic rite of passage, forming a band (under the name Meta-eX,
with his brother-in-law Jonathan Graham), while GW recalled that his undergraduate
interest in algorithmic composition, to be followed by research in the Western contem-
porary tradition, underwent an epiphany when he had to explain his plans to band
members he met at a party on the way to start his PhD in Princeton.

For a traditional music school or conservatoire context, the community of live cod-
ing may be difficult to accommodate within conventional group structures given the
quite different pace and rhythm of (intermittent) edit and (continuous) execution, in
contrast to the conventional instrumentalist’s constant adjustment of note articula-
tions but near inability to discuss the work while still making sound. DO did not really
start live coding until 2010, with the formation of Cybernetic Orchestra. For him, the
medium of code leads to forms of sharing beyond those needed for more individual
musical practices. While instrumental performance gestures happen in the moment,

28 Chapter 2

code gestures are temporally distanced from their effects and thus able to accommodate
a parallel time stream of discourse, through which members are able to consider and
grasp what others have done. Of course, code can also be an explicit technology of con-
trol, allowing those inside or outside the group to expose or impose individual inten-
tions to a much greater extent than possible with conventional instruments.

Whether or not live coding is intrinsically communal, the network of personal con-
tacts that have been described here were essential to the development of the form.
Notably, AM extended the community through personal connections, such as an office
across the hall from JA or meeting AC while learning SuperCollider from Romero. Once
able to perform in public, the memorable venues and events of the experimental arts
scene resulted in lasting impacts—two remarkable algoraves in the art vessel MS Stub-
nitz in April and May 2013; SK, BatMan, and DO visiting a tiny island in Venice for the
laptop orchestra/ensemble festival Laptops Meet Musicians in July 2011; JR and RW
live coding a musical accompaniment to silent movies as Signifikantelstadl starting in
2005; or the Hamburg-based band ginkgo turning a chill-out room into a mock office.*

Revising Histories, Reshaping Communities

Existing at the intersection of performing arts and computer science, live coding risks
the same challenges and problems with diversity that continue to persist within these
fields, as well as within technologized performance cultures more broadly.* Certainly,
the fields of electronic art music, computing, and software engineering are not widely
recognized for their diversity. However, since live coding is neither conventional soft-
ware engineering nor mainstream art or music, it arguably has the capacity to emerge
as a community of practice relatively free of the hierarchies and expectations that have
habitually dogged its neighboring disciplinary fields.

The rhetoric of live coding’s emergent community is often portrayed as inclusive,
even utopian—an invitation for new collectives to form or a welcome offered to people
of diverse artistic, educational, ethnic, and gender backgrounds. However, although
the contour or boundary that gives shape to an emerging community creates condi-
tions of belonging and commonality, it can also mean that there will always be indi-
viduals who do not belong or remain unrepresented.*" While live coding aspires to be
an inclusive community of practice, it is not always as simple as that. As live coder JA
points out, “Computing has been coded masculine.”** The gateway of entry might well
be open in principle, but this does not always mean that its threshold is easily crossed.
Networks and communities emerge through complex webs of association and initia-
tion, friendship, and fraternity. Educational experiences can often create conditions of

Partial Histories 29

expectation and convention, establishing unspoken rules and permissions, possibili-
ties, and limitations. For example, the early educational experiences of prominent digi-
tal artists such as AA were significantly shaped by the continual socialization of women
not to be the stereotypical coder. While the educational climate has changed, female
live coders, such as AA and, more recently, ALGOBABEZ (JA and SK), have ironically
appropriated the persona of the stereotypical performing nerd, celebrating the coun-
terexpectations of adopting subversive gender identities. Increasingly for some female
live coders, however, the challenge is also one of moving beyond ironic critique toward
actively shaping and redefining the future of live coding in more affirmative terms.*

In spite of the aspiration of live coding to be inclusive and diverse, and though
female coders such as AA, AC, and SK have become key figures within the live coding
community, the number of male live coders arriving in the community constantly
threatens to dominate. Due to the rapid increase in its size, there is a real risk that the
growing community will become less diverse than even at its inception, potentially
recapitulating the historical displacement of women pioneers in electroacoustic music
and the sonic arts.** Tactics for addressing the continuing gender diversity imbalance
take two distinctive approaches: the active reshaping of a community through inter-
ventionist and activist strategies and the rewriting of existing histories as a correc-
tive toward a more inclusive narrative to reimagine a different future. Projects such as
OFFAL (Orchestra for Females and Laptops) and the duo ALGOBABEZ have affirma-
tively foregrounded the female gender of their performers.

Significantly, many female live coders have also been instrumental in establishing
specific communities and educational opportunities for supporting women’s engage-
ment in live coding, reshaping the future of live coding through advocacy and activ-
ism, through women-only workshops, and through mentoring and other initiatives to
widen participation. For example, in the UK a pivotal moment for redressing gender
balance within live coding was the free all-women Live Coding Workshop led by the
Yorkshire Sound Women Network at Huddersfield University (December 2015) and
funded by the Arts and Humanities Research Council Live Coding Research Network,
which introduced twenty women to ixi lang and SuperCollider.** Further widening
participation, JA has since led live coding workshops at the National Media Museum in
Bradford, England, as part of “Make Some Noise,” which targeted students (around the
age of eight to nine years) from areas with low socioeconomic backgrounds. In 2019
the Northern Sound Collective hosted a series of symposiums, workshops, and hack-
athons (open only to women, including trans women and nonbinary people) with the
theme “Automation and Me: Living an Algorithmic Life” to explore themes of bodies,
technologies, and automation.*

30 Chapter 2

In her article “Finding Joy in Error and Space to Fail In,” JA argues that “in com-
puter science pedagogy, one argument that has been put forward to explain the lack
of engagement from women is their fear of failure.”*’ A significant characteristic of the
advocacy and education platforms described above is that they reportedly create safe
spaces for failure, for taking risks and trying something out. Rather than foreground
the need for technical virtuosity, such all-women and nonbinary opportunities offer, as
JA argues, “underrepresented groups . . . a safe space to fail in their learning . . . a space in
which to fail constructively.”*® Strikingly, JA reports that while many female live coders
feel encouraged by advocacy and educational projects and even by the inclusive culture
of algoraves, they continue to feel excluded from key community spaces such as the
live coding Slack channel.* JA argues that “the dominance of technical discussion on

730 where the focus of discussion on tools

Slack underpins the maleness of the forum,
and technicalities can both alienate and undermine female coders.

The introduction of algorave guidelines has also been an important gesture in
changing a culture within the live coding community®'—for example, by encouraging
promoters and organizers to program lineups that reflect a greater gender balance and
diversity more broadly. This is a positive intervention, yet there is still a risk that such
practices inadvertently reinforce the sense of live coding as a predominantly white
male culture whose rules and codes might be modified (slightly) to better allow others
in. How can the live coding community become truly inclusive, not simply allowing
or giving access to a wider diversity of individuals but rather becoming truly co-
constituted and actively reshaped by the diversity of its evolving members? How can
the language of inclusivity shift from one of “letting in” and “opening up,” inadver-
tently reinforcing a sense of its own boundaries and gatekeepers, toward something
that better reflects the transformative possibilities of greater diversity? In order for live
coding to be a connecting force across diverse communities of practice, structuring
hierarchies should continue to be rejected and shaken up when formed.

In compiling the partial histories of live coding, we have become increasingly aware
of omissions and exclusions and of various biases, privileges, and blind spots, not least
in relation to matters of diversity. Live coding aims to be inclusive; still, its evolution
has been (and continues to be) uneven and nonlinear. While the early histories of live
coding have a specifically European focus, in recent years the practice has evolved and
developed into a truly global phenomenon. As live coding practices and communi-
ties develop in Africa, India, Japan, and Mexico, they are shaped and informed by the
distinctiveness of those geographical, cultural, and sociopolitical contexts. The increas-
ingly international nature of the live coding scene, particularly the strong communities
that have grown in Central and South America, has begun to counteract its previously

Partial Histories 31

European- and US-centric focus. For example, the /* vivo */ festival in Mexico City in
2012, the International Conference on Live Coding (ICLC) in Morelia in 2017, and the
“Livecoders latinoamericanos” day programmed at the ICLC in Madrid 2019 revealed
the radical vibrancy of the Latin American live coding communities to the wider scene,
with the ICLC now held in both Spanish and English. While diversity in the live cod-
ing scene has been discussed and confronted from the early days, the focus has tended
toward issues of gender, rather than aspects such as race and class.** However, events
such as the police murder of George Floyd on May 25, 2020, and the impact of the
Black Lives Matter protests that followed brought the matter of race into focus with a
heightened sense of urgency, calling for intervention and activism beyond expressions
of solidarity and performative allyship. The (Algo|Afro) Futures mentorship program
is an initiative led by digital artist and curator Antonio Roberts in England that supports
four Black artists in the West Midlands area who are in the early stages of their careers.
The first cohort of this program—digital artist/musician Rosa Francesca, fine artist/film-
maker Emily Mulenga, mixed-media poet Samiir Saunders, and musician/illustrator Jae
Tawallah—were encouraged to explore live coding from the perspective of their own
practices rather than fix any problem in the existing scene. They approached the theme
from an intersectional standpoint, bringing varied interests and backgrounds in neuro-
diversity, embodiment, anticapitalism, feminism, queerness, postcolonialism, and dis-
ability justice.*

In parallel to the interventions and activism intent on changing the existing culture
of live coding, there is also potential in revising the history of live coding itself, reveal-
ing alternative narratives in which the historical presence of people who are disad-
vantaged and/or underacknowledged (based on gender identity, ethnicity, or class, for
example) are properly recognized within the evolution of computational technolo-
gies. The trouble with histories—partial or otherwise—is that the collective memory of
events and the visibility of certain individuals or practices afforded within a particular
historical narrative are inescapably conditioned by the privileging norms of the social
and cultural milieu itself. At times, then, a more active reading of alternative histo-
ries—of a more overtly revisionist or reparative history—becomes critically necessary
for addressing those existing and persisting blind spots and exclusions, for telling his-
story from a different perspective. For example, at the International Conference on Live
Coding in Hamilton (2016), Amy Alexander’s keynote “At the Margins” highlighted
historical examples within computer science and the arts that were considered marginal
or peripheral in their time but have had a long-term impact on their fields.** These
included the seemingly clerical work of early telephone switchboard operators along-
side the innovations of influential female programmers, including Rear Admiral Grace

32 Chapter 2

Hopper, a pioneer of computer programming who popularized the idea of machine-
independent programming languages, leading to the development of COBOL, the early
business-oriented programming language.

Certainly, the role of women within the evolution of computer technology and pro-
gramming generally requires ongoing reappraisal. The pivotal contribution of named
individuals such as Ada Lovelace (1815-1852, known for being the first “computer
programmer” writing an algorithm for execution by a computer—Babbage’s Analytical
Engine) or Margaret Hamilton (credited with invention of the term software engineer-
ing®®) must be remembered in the context of innumerable unnamed others, such as the
thousands of female “human computers” operating in the 1940s whose skill, knowl-
edge, and dexterity have been historically undervalued. While software engineering
emerged from the space program, in the military and patriarchal context of the Cold
War, the golden age of electronic and computer music took place in more independent,
less hierarchical, and therefore less male-dominated scenes. As it has developed, both
commercial and academic power structures have formed,*® but these do not necessarily
represent the diversity of the early pioneers. Reflecting on the stellar lineup of the 2016
Mothers of Invention festival in London, Laurie Spiegel commented:

Why so many women in early electronic music? Back then there were very few women com-
posers of any kind. That was partly because men controlled access to performance, presenta-
tion, preservation and publication resources (concert venues, print and vinyl, concert halls,
orchestra, radio airplay . ..). In contrast, electronic equipment did not treat women any
differently from men. We were able to turn our musical ideas into sound and then play them
for people without the almost-always-male establishment gatekeepers and their biases.”

There have been conscious efforts to reject such hierarchies from developing in the live
coding field.*® Beyond the reparative retelling of an existing evolutionary chronology,
there are parallel attempts to radically rethink the chronology itself, to establish alterna-
tive historical references to contemporary coding that in turn invite a rethinking of its
possible future.

Textiles and Coding

One attempt to revise or even rewrite the historical evolution of computing and cod-
ing, specifically in relation to live coding, can be witnessed in recent research projects
that reconsider the links between coding and textiles. The development of the Jacquard
loom is often credited as a key precedent in the evolution of computational hardware.
First demonstrated in the early 1800s by its inventor, Joseph Marie Jacquard, the Jac-
quard loom served to simplify and accelerate the manufacturing of textiles using a
system of punch cards to control a mechanized process of weaving. These punch cards

Partial Histories 33

inspired the use of perforated cards by Charles Babbage in his Analytical Engine, and the
Jacquard loom is thus considered a key technical precursor in the history of computing.

However, this focus on hardware and machinic evolution often neglects the cogni-
tive connections between weave and code.” Indeed, as philosopher and cultural theo-
rist Sadie Plant asserts, “The computer emerges out of the history of weaving. . .. The
loom is the vanguard site of software development.” By eschewing the well-established
(accepted, normative) relation between the technologies of weaving and coding,
research projects such as Weaving Codes/Coding Weaves (2014-2016) have focused
more explicitly on the qualities of cognition and creativity emerging within tradi-
tional handloom use and how the handweaver’s sense of embodied cognition can be
extended to the practice of coding.®® The project argues that automated Jacquard weav-
ing is antithetical to the principles of live coding—its planning in advance seems closer
to the hands-off, automated generative music ethos developed since the 1950s—and so
to find analogs to live coding, we have to look for roots that go further back in history.

Multimedia artist and technologist Paola Torres Nufiez del Prado has connected live
coding with Peruvian textile practices through her Textile Patching performances,
live coding with embroidered interfaces at the International Conference on Live Cod-
ing in 2017. More recently, she has launched the Neokhipukamayoq manifesto,®' pre-
senting a vision for technology grounded in a heritage based on Khipu-making, the
pan-Andean method of digital memory storage with knots in string, known for its
use by the Inca Empire for recordkeeping. In this manifesto Nafiez del Prado brings
forward a living history of technology that is respectful of its origins as well as its con-
temporary presence in Andean culture and mindful of its growing presence in the arts
worldwide. The importance and indeed urgency behind this manifesto is in asserting a
technological hierarchy where Indigenous thought systems are respected, where data
representation is literally textile and connects with a wider vision of ecological equilib-
rium. Where live coding proposes a vision of technology with the programmer part of
the program, the Neokhipukamayoq manifesto steps back to include culture and the
environment in the loop. As stated in the manifesto:

In these times of climate emergency, it is imperative not only to question the materials used in
our practice nor their energy consumption nor their carbon footprint, but their design, sym-
bolism and historicity. . . . Another technological narrative from the arts is imperative, one
that will begin with the study of divergent technological expressions of the past and present.

From Instituting Moments to Institutional Frames
The focus on textiles (and especially ancient textile processes) traces live coding back to
its earliest of precedents, conceived as an “instituting moment” for live coding practice.

34 Chapter 2

However, the insurgent energy of the instituting moment or movement—the emer-
gence of something new or novel—eventually becomes absorbed by or becomes itself
an institution.®”” The TOPLAP manifesto was important in galvanizing the terminology,
spreading it, and contributing to the realization that programming computers live on
stage is a valuable activity. Many of the early live coders who started out as young art-
ists and student rebels have now graduated to become academics—research fellows or
tenured faculty—while others are loosely connected to academia even if working as
independent artists.

In combination with the continued growth of the live coding community and its
intersection with the goals of technology researchers as they design more dynamic
software-engineering tools, the dynamism of this cross-disciplinary enterprise has
inexorably led to research grants, conference series, and academic publications. The
German computer science research center at Schloss Dagstuhl hosted a 2013 meet-
ing dedicated to live coding for art, education, and engineering—an event at which
the plan for this book was first proposed.®® Subsequently, funding for a Live Coding
Research Network from the UK Arts and Humanities Research Council, directed by
Thor Magnusson and Alex McLean, supported a diverse range of events and meet-
ings, starting with a launch event in March 2014 at which NC was invited to present a
comprehensive history of live coding. Following a series of workshops and symposia,
the first ICLC was organized by the Live Coding Research Network in 2015 and held
at the University of Leeds.®* A parallel series of events, whose organizers were also rep-
resented at the Dagstuhl meeting, has focused on engineering rather than the artistic
implications of liveness in software development.®

At the same time, live coding has resisted the hierarchies of control that sometimes
build around academic disciplines, and much of the creative and technological activ-
ity now takes place outside of institutions. The current wave of groundbreaking new
systems, such as Hydra, Orca, Flok, Improviz, and Bespoke, have all been developed
by independent practitioners, and the ICLC has increasingly promoted an atmosphere
that is as much a festival as an academic event, aiming to be accessible to those without
institutional backing through free or low-cost entry and travel grants. Likewise, proj-
ects born in academia, such as TidalCycles and Sonic Pi, are now thriving as independent
projects sustained by their communities. In the case of TidalCycles, this is via Sum-
mer of Code grants and an OpenCollective fund, while Sonic Pi receives support from
donors via Patreon. Nonetheless, academic research continues apace, research projects
and studentships continue to be funded, and centers such as the Networked Imagi-
nation Laboratory at McMaster University are able to benefit from exchanges with
other thriving cultures of practice, such as Colectivo de Live Coders in Argentina and

Partial Histories 35

NL Coding Live in the Netherlands, among the thirty-two local communities loosely
affiliated as TOPLAP nodes.*® In 2021 the European Culture—funded project On-the-Fly
included both artistic and research residencies in a varied program held at collaborat-
ing institutions in Barcelona, Ljubljana, and Eindhoven. As it does in many other areas,
live coding challenges the accepted institutional distinctions, including that between
the artist/practitioner as distinct from the academic.

Algorave

While the instituting energies of live coding have been absorbed and assimilated into
institutional practices, and indeed while many of the first generation who are still
active as live coders operate within these institutional frames, the insurgent and irrev-
erent imperative of live coding persists. Parallel to the increasing institutionalization or
even professionalization of live coding, the new genre of algorave has emerged. Coining
the word algorave as the name of a new genre was a decisive moment in the history of
live coding. Informed by NC'’s own research into the development of electronic pop
music genres, AM and NC realized that a musical genre could become a rallying stan-
dard for a wider understanding of live coding.

AN L G

o A\ R

N Vo

Algorave logo designed by David Palmer, a “spirangle” based on the three-armed algorithmic struc-

J

L

Figure 2.3

ture of the Brigid’s cross.
Source: Wikipedia, “Algorave,” last modified September 12, 2021, https://en.wikipedia.org/wiki
/Algorave.

https://en.wikipedia.org/wiki/Algorave
https://en.wikipedia.org/wiki/Algorave

36 Chapter 2

Though the word algorave is undoubtedly ironic in part, just as was the case with
TOPLAP, it caught the imagination of both an older generation of music and tech-
nology writers who had participated in the rave scene of the 1980s and a younger
generation of nightclubbers accustomed to electronic dance music. For example, MH
was among a new generation of live coders who were inspired to use their technical
skills to recover earlier music ambitions (in his case, as a promising young composer
before entering the software industry). The popular technology magazine Wired pub-
lished a short profile of algorave,®” following a key early event on the “art ship” MS
Stubnitz, followed by articles in Vice, Dazed and Confused, and the Wire.®® This media
interest exposed a new audience to the phenomenon of live coding that was many
times beyond what had been seen at that point. In turn, as the practice has developed
so have emergent guidelines for algoraves, which while demonstrating resistance to
institutions or institutionalization, as well as against hierarchies, nonetheless stipulate
an underpinning ethos and set of principles.*’

A key question for live coding is what happens when the method becomes ubiqui-
tous, accepted, and familiar. When the novelty of the performative situation wears out
and the practice infiltrates regular club events or festivals (such that there is no need to
advertise special “live coding” or “algorave” events), will this mode of practice simply
become part of mainstream programming, irrespective of the method of performance?
Many of the live coders interviewed remain on the periphery of the technical, aca-
demic, and commercial establishment—and are concerned that growing mainstream
audiences might lose the spirit of anarchy and subversion out of which the movement
has grown. Indeed, Thor Magnusson has argued that although live coding is a term
that has an important initial function when we introduce and explore this way of
working with our machines, at some point the method will be so natural—to program
a computer in live contexts—that we will not need to focus on the method anymore.”
This transition from marginal to mainstream can be witnessed in relation to video art,
media art, or, to a certain extent, even live art—specific named practices that were once
clearly differentiated and invited dedicated attention and audiences, but have gradually
been assimilated into contemporary art more broadly.

One way of thinking about these different arcs—from instituting moment to institu-
tionalized practice or from interest in the medium- or method-specificity of an emerg-
ing practice to assimilation into the generic mainstream—could be through a wider
consideration of group dynamics and group formation. In 1965, education psycholo-
gist Bruce Tuckman conceived a model for describing the different stages of group
formation, which arguably can be seen at work within the evolution of the live cod-
ing community: forming (setting the stage), storming (meeting conflict and tension),

Partial Histories 37

norming and performing (implementing and sustaining projects), outperforming
(expanding the original initiative and integrating new members), and adjourning. This
last adjourning (sometimes even called mourning) stage is double-edged because the
expansion of an original initiative also involves breaking up or moving beyond the origi-
nal group dynamic and even a sense of letting go.

New live coders—shaped by changes in technology and culture—continually add
to and modify the practice of live coding and the understanding of its potential. As
the practice of live coding reaches different geographical, cultural, and socioeconomic
contexts, it inevitably changes. Certainly, the lived experience and articulation of live
coding practice is going to vary depending on whether you are a live coder living
in Europe, Japan, Mexico, Argentina, North America, Australia, or India. While the
internet promises a shared global platform, in reality, practices, ideas, technologies,
and theories circulate at different speeds and rhythms through different intensities and
durations. The community of live coding might be described as being in its norming,
performing, or even adjourning stage in one context, while in another context it is still
nascent, still emerging. Indeed, our biographical interviews regularly drew attention
to themes of empowerment, emancipation, and education as implications of the live
coding movement. Despite the prevailing spirit of modesty and ironic detachment that
has surrounded the development of live coding, initiatives such as AM’s engagement
with refugee-related arts and diverse community groups, or SA’s fervent educational
campaigning, demonstrate real engagement with the mission that has been central to
the philosophy of live coding since its founding manifestos.

This book itself is pitched at an interesting moment in the history of live coding,
within the arc of live coding’s evolution. This chapter narrates a partial history of live
coding from its emergence, through its evolution, to the point (now, as we are writing)
where the stories composing this history are becoming more difficult to track and trace.
TOPLAP has itself dissolved into a loose affiliation between geographical nodes with
independent identities and online communities, where perhaps more discussion takes
place in Spanish than English, with international activity centered around particular
live coding environments.”! In a sense, then, the book could be read as a marker or
signal of a transition already taking place within live coding or perhaps (if live coding
is conceived to be entering its adjourning/mourning phase) even as its obituary. Yet the
complex interdisciplinary, intercultural landscape of contemporary live coding, con-
necting with heritage practices in order to look to the future, means that it has become
increasingly problematic to view the evolution of this practice as a single linear arc.
Not only is the live coding landscape always changing; its community spans multiple
intersecting landscapes with a commitment to keeping ideas alive and changing that

38 Chapter 2

itself disrupts and dissolves hierarchy. Additionally, the tension between disciplinary
discourses—for example, between art and engineering, as we discuss in chapter 7—has
been perennial in every field of technical innovation, with craft, design, and indeed
music often to be found in the contested intersection. It therefore seems likely that
these alternative perspectives and communities will continue to grow into the foresee-
able future.

Eighteen years on from the critical gathering of the Changing Grammars sympo-
sium of 2004 and the drafting of the TOPLAP manifesto, this book hinges on a moment
in live coding’s evolution when it is just about still possible to narrate a partial his-
tory, however fallible, at a critical juncture from where the practice of live coding now
diverges and diversifies in ways we cannot yet tell. While this chapter has attempted
to give some kind of coherence or contour to the arc of live coding’s development thus
far, chapter 3 presents live coding in its singularity, exposing the specific approaches
through which live coding manifests within a diversity of different practices. Neither
comprehensive nor exhaustive,”” these expositions are conceived as personal perspec-
tives on the practicing of live coding by live coders.” The chapter includes both the cre-
ators of new live coding tools and those who have developed artistic practices through
using those tools. Some identify primarily as technologists, some as composers, and
some as performing artists. As editors of this chapter, we do not attempt to synthesize
a single narrative. Rather, we provide an opportunity for the diversity of live coding
to be represented through rich accounts of practice and allow the practice to speak for
itself and on its own terms.

3 Expositions

Rangga Aji, Alejandro Albornoz, ALGOBABEZ, Rafaele Andrade, Jack Armitage,

Pietro Bapthysthe, Lina Bautista, Renick Bell, Ashlae Blum(e), Alexandra Cardenas,
Lucy Cheesman, Joana Chicau, Nick Collins, Malitzin Cortes, Mamady Diarra,

Claudio Donaggio, Jason Freeman, Flor de Fuego, Sarah Groff Hennigh-Palermo,
HAUS++, Mike Hodnick, Timo Hoogland, Miri Kaat, Abhinay Khoparzi, Shawn Lawson,
Melody Loveless, Mynah Marie, MicoRex, Fabrice Mogini, Kofi Oduro, David Ogborn,
Jonathan Reus, Antonio Roberts, Charlie Roberts, Jessica A. Rodriguez, Iris Saladino,
Kate Sicchio, th4, Anne Veinberg and Felipe Ignacio Noriega, Rodrigo Velasco,
Elizabeth Wilson, Anna Xambé

40 Chapter 3

Photo by Alieneta Firdausi

Photo by Ahmad Mulkan Karim

Expositions 4

Rangga Aji
Program Director: October Meeting—Contemporary Music & Musicians,
Special Region of Yogyakarta, Indonesia

For me, live coding is a method that could be implemented in any kind of artistic practice. | live
code in my music performance work and sometimes also for live visuals. | got interested in live
coding when | saw it as another possibility in art and music creation, especially given the genera-
tive ideas that could be implemented on it. The way of projecting/showing the coding process
also adds the variant of presentation, especially in the ontology process of electronic music.

| love to share what | know about live coding practice with people. Sometimes | do little
private live coding sessions for individuals or groups, online or off-line, helping with installation
and teaching a bit about Sonic Pi, FoxDot, TidalCycles, and Hydra and then Estuary, Troop, and
Flok for the possibility of remote live coding. | also made an introduction video about live- coding
music and visuals in Bahasa Indonesia." | feel like it still couldn’t provide a better explanation of
live coding, but | decided to make it happen so people could at least become intrigued enough
to try to learn it by themselves.

For me, both live coding from scratch and live coding from prepared code are exciting and
promising for my live coding practice. With the first method, | can learn how to directly or slowly
decide what kind of musical structure | want to build without depending on any prepared code.
With the second method, | can have some control over my music composition while introducing
aspects of live coding. I'm also thinking about the possibility of both approaches in exploring the
idea of certain musical etude compositions for live coders.

Based on what I've been experiencing in Indonesia, live coding is starting to slowly emerge.
Even though only certain people became intrigued and started their own live coding activities in
certain places here, | think it will soon become something unexpected, but I’'m not sure what.

One thing I've noticed is that live coding often brings up a new topic to be discussed—
for example, the idea of remote live coding and an ensemble. | remember a discussion about
this with fellow live coder friends from Indonesia and India, Maria Maya Aristya and Abhinay
Khoparzi.> One of the many things we talked about was the musical possibilities that could be
implemented in a remote live coding performance as an ensemble. This is exciting for me since it
seems like it could be the opening of further possible perspectives.

https://linktr.ee/ranggapuraji

https://linktr.ee/ranggapuraji

42 Chapter 3

Alejandro Albornoz, a.k.a. co(n)de Zero, and Christian Oyarzin.
Image credit: Constanza Lobos

Image credit: Alejandra Caro

Expositions 43

Alejandro Albornoz, a.k.a. co(n)de Zero
Universidad Austral de Chile,
Valdivia, Chile

For me, live coding is a fresh way to embrace live electronic music, a field I've been involved with
since 1989. With my band Arteknnia, we moved from electro-industrial live acts with synths to
synth-pop by MIDI sequences, drum machine, and guitar. After 1995 | started to compose just
with a synth and cassette tapes, resulting in my ambient/electronic dance music solo project
Mankacen. From 2003 onward, this was in parallel to my electroacoustic output in a more “aca-
demic” compositional path. Whatever the style, I've used different DAWs (digital audio worksta-
tions) extensively, which progressively led me to lose interest in performing electronica, focusing
my practice on acousmatic. | discovered TidalCycles during a gig by Yaxu (Alex McLean) in Shef-
field in 2015. It blew me away, so I've started to learn first ixi lang and then Tidal. | felt that | was
in front of a completely new way to perform, something that matched with my incipient ideas on
using simple algorithms in a fresh live situation. Before that, | would say since 1999, | was using
simple algorithmic procedures to get some materials but, usually, in deferred time.

I think showing the code on your screen is so nice, friendly, and transparent. Something very
important for me is to perform from scratch . . . that’s so adrenaline pumping and challenging,
making me feel alive. There is enough room to mix stable pulsating pattern structures and tex-
tural material. . . . TidalCycles in particular allows me to create new electronic tracks and at the
same time materials that | use in acousmatic composition. Probably, this would be my only and
modest contribution: an unbiased approach in terms of styles or aesthetics, moving between bro-
ken post-techno structures, glitchy textures and rhythms, Chilean folklore patterns, and granular
synthesis. All of this operates in a recursive personal ecosystem, from which outputs are electronic
tracks and acousmatic pieces. Among all this, I've developed a special interest in working with
voice and words. However, in spite of the possibility of creating known musical styles, the most
relevant aspects for me are the unexpected structures and sounds provided by these techniques.

| lived in Sheffield, UK, between 2015 and 2019, where | started to be in touch with TOPLAP,
Tidal Club, Eulerroom, and Algomech Festival, among other live coding instances. Since then,
I've returned to my country, Chile, with the intention to spread the practice and tools to as many
people as possible. This is an ongoing project that is growing slowly and has been heavily affected
by the COVID-19 pandemic. In this endeavor it has been very important to be in touch with
people and groups, including live coder and media artist Christian Oyarzin, the cultural center
Taller La Cisne Negro, and the Pueblo Nuevo netlabel. Hopefully, we are intensifying our activities
this 2021, which includes holding the International Conference on Live Coding (ICLC) in our city,
Valdivia. Live coding is still very new here, but I’'m convinced it is a great tool, even beyond artistic
outcomes. | see it as a way to gather people through open and democratic spaces involving art
and technology, especially for children and young people’s education.

alejandroalbornoz.wordpress.com/conde-zero/

Chapter 3

44

Photo by Antonio Roberts

Expositions 45

ALGOBABEZ (Shelly Knotts and Joanne Armitage)
UK

ALGOBABEZ came together through a shared skepticism of code-bro cultures, a flurry of estro-
gen, and overloaded algorave lineups. Collaboration was inevitable. We were both performing
regularly as solo performers but were drawn together by the maleness of the scene. Our first per-
formance took place in the corporate sheen of the Open Data Institute as part of the Leeds Digi-
tal Festival. We felt a sense of disrupting the atmosphere—when we started playing, the crowd
changed. The women moved forward; the men moved backward. We had to let rip! Though totally
unplanned, this set up a “legend” around ALGOBABEZ as an obnoxiously noisy and unapologeti-
cally feminist double act.

Our individual live coding practices meant we naturally fell into specific musical roles: Shelly
making textural drone sounds and Joanne tending toward rhythmic material, juxtapositioning
Shelly’s lo-fi software synth sounds with Joanne’s hi-fi MIDI instruments.

Beyond algoraving, we have looked at new ways of knowing and controlling sound through
performance (i.e., BabeNodes, Vibez, Chemical Algorave), combining Joanne’s knowledge of physi-
cal computing and Shelly’s skills with biometrics and algorithmic systems. Shelly’s experience in
networked music has enabled our continued collaboration as the physical distance between us has
increased.

We both engage with feminist theory in our academic work, and this has informed the way
we present ALGOBABEZ. Connecting ALGO to the ironic use of a term of endearment allows us
to overtly perform gender in academic and electronic music scenes, where women are underrep-
resented. We've used this “ironic gender performance” as a way to build narratives around our
work. As a band, we've rejected the use of prewritten code and structures—acting in the moment,
responding to context, audience, mood, alcohol consumption, and each other. Before performing,
we don't discuss structures, preferring to just bounce off each other, developing a structure as we
work, continually creating and resolving tensions. We work to strip back dense textures and create
space for each other across the frequency spectrum. We work on other computer music projects
that are centered around collaborating with, teaching, making space for, and promoting women in
the field. One joint project is OFFAL (Orchestra for Females and Laptops), an international telematic
women-only laptop ensemble who perform through audio streaming and web interfaces.

The sound world of algorave has changed as a result of ALGOBABEZ taking noisy sounds and
seamlessly integrating them into four-to-the-floor beats. We didn’t set out to play a particular
genre or type of music, but this emerged out of improvisation and performance—we reference
the more experimental side of live coding (often concerned with SuperCollider synthesis) and
transpose it into the algorave context while projecting ourselves as bad-ass women. We’ve seen
this experimentation with sound propagate across the scene since we started playing.

ALGOBABEZ has also made a significant contribution to diversifying the gender balance in
the UK algorave scene through teaching workshops and acting as role models. Through this, we
have achieved a critical mass of women who are performing, teaching, and organizing live coding
activities.

https://twitter.com/algobbz; https://algobabez.bandcamp.com

https://twitter.com/algobbz
https://algobabez.bandcamp.com

Photo by Paulus van Dorsten

Expositions 47

Rafaele Andrade

Knurl, an interactive and open-source cello, is a creation of the composer and cellist Rafaele Andrade.
It has been reaching audiences all over the world for its nonstandard vision, bringing music into
political, technological, and environmental discussions. This project brings open-source practices,
sustainable three-dimensional printing, creative coding, and sustainable energy sources into the
hands of a diverse team composed of local artists, designers, scientists, and programmers. Besides
Knurl, Rafaele explores themes such as climate change, globalization, and feminism in her own
artworks; every matter matters, and every message is also part of an ongoing process.

Knurl is a product of creative coding and open-source culture: its interface and web platform
were designed by members of Netherlands Coding Live at the instrument inventors’ initiative in the
Netherlands. During its year of development, it became the product of an artistic research organiza-
tion (Knurl Lab) that brings creative coding into the hardware of a musical instrument, in dialogue
with issues that our music world has been facing (climate change, globalization, and so on).

The intention to unify its creative approach as a single process is clear: to develop an idea
through active practice. It is to collapse prototypes, one after another, and collect as much feed-
back and evaluation as possible. To create is to finish thousands of such cycles as a deep experi-
ence into your personal life. Rafaele believes that these experiences can be enhanced by using all
your senses, your body, your well-being, and your health.

As science moves forward with the development of new tools, the invention of new musical
instruments can also open a new chapter in music history. Realizing that Knurl isn’t only an instru-
ment but also an interface, a platform, and a piece of hardware, this project intends to solidify
those results, testing their applications as tools that also represent cultural heritage.

New repertoires for the cello and electronics in collaboration with other instruments have
been made and presented at international music festivals, conferences, and artistic residences.
The intention is to explore how instruments and technologies can create new bounds and
approaches between their users, creating new forms of relationships and entertainment. Creating
new instruments also provides the opportunity to explore sustainable practices—for example,
ways to capture sunlight or even sound output as energy storage, as well as the development of
biodegradable materials for acoustics solutions.

48 Chapter 3

4,92} veshoyt(
1 15 0] [10°18m

OsivLY

Photo by Maggie Kane https://www.instagram.com/streetcat.media/

https://www.instagram.com/streetcat.media/

Expositions 49

Jack Armitage
UK

Live coding is a set of tools and methods for sculpting dynamic musical systems via algorithmic
notation, often but not exclusively through the medium of text. | first engaged with it as a way
to escape the limits of traditional music software, and still do. Since | started | have pursued two
goals with my live coding practice. First, | strived to raise live coding to equal status musically with
pop and dance produced via traditional means, to humanize coding and inspire “noncoders” to
reclaim it from the techno-academic elite. Second, | have used it as a platform to research more
richly embodied forms of dynamic musical media, to liberate us from the anachronistic typewriter-
and-paper-emulator interfaces that demean us daily. While | have in my view contributed signifi-
cantly to the first goal, its measure of success is whether | inspire anyone to surpass me, and so far
that hasn’t happened, but | remain optimistic. The second goal has so far been open-ended and
long-term oriented, with only a few short papers and prototypes to speak of.

| see my practice as locked in tension and even opposition with other live coders, and | suspect
that others feel the same way (about themselves and me). This tension arises when | import main-
stream pop/dance references into live coding and similarly when | take liberties with live coding
dogma. This is a necessity when performing on pop/dance music lineups where | am the only live
coder, but for me it also highlights the frequently self-serious presentation of live coding and its
often spartan musicality. At the end of the day, there is always something about other live coding
practices to be inspired by; it's especially inspiring to see first-time performers, which is frequent
in the live coding community as compared with other music communities I’'ve been part of.

Since my primary goal has been nontechnological and | arrived in the scene at a time when
powerful live coding systems had already matured, | have dedicated my system design energy
toward the future and lie in wait for the appropriate moment to act. This is another way of saying
that | haven’t actually built anything myself yet.

Coding in the large is gradually becoming live by default, and the days of coding as a singular
practice of moving text using a typewriter are numbered. Consequently, live coding itself as a
stand-alone term or field does not have a future: it will not permeate more than it already has,
and it will soon be outmoded by younger generations who look and talk differently. However, its
impact as a stepping-stone is already in my view historically undeniable. As for the future, | believe
that the things that reference live coding (explicitly or not) will be numerous and marvelous.

As it is not a general term, | doubt that live coding means anything to the “general public” other
than something technical sounding and thus vaguely threatening. If as an experience it is foisted
on an unsuspecting public, audiences initially perceive live coding as a curious academic gimmick
with a poor technique-to-music ratio. If they manage to stay through a whole show, they start to
see that every performer’s approach and music are different and that, rather bizarrely, this means
there must be a whole subculture of this stuff going on somewhere—and they would be correct.
But in the future, the general public will be much more likely to live alongside the offspring of live
coding than the parent.

jackarmitage.com

50 Chapter 3

pietro bapthysthe
pietrabaptHiysthe.bandcamp.com

Photo by Mari Moraga

Expositions 51

Pietro Bapthysthe (Diego Dukdo and Berin)
Brazil

For us, live coding began as another way to explore our musical interests together. Over time, it
proved to be a perfect fit because we feel more able to reproduce what we are imagining without
having to struggle with the physical limitations of instruments.

We started to explore live coding together as a practice in June 2019, during a Python confer-
ence in the northeast of Brazil. Starting with live coding as an improvised way to have a party to
celebrate the end of the conference was amazing! It helped us to grow a strong need to promote
a community in Brazil. Since then we’ve been active members in Algorave Brasil, helping new-
comers, organizing events and workshops, and sharing content about live coding. During 2020,
we also released monthly records with recorded live coding sessions.

The live coding tool we use the most is FoxDot. We've already made a few contributions to
the project and to Troop as well. But we also have our own SonicBox, which is a mobile app that
interacts with Sonic Pi, allowing us to make improvised melodies with a mobile device, together
with the music being played by FoxDot.

Currently, here only people that practice live coding listen to live coded music. It's a small
niche—a very prolific one—but small. We think that will change and that live coded music will
blend with regular music and that sometimes we won'’t even know, for example, that rap that
is playing was made with live coded music. We also think that schools will adopt live coding to
teach programming and music at the same time because it is such a good way to learn both of
the subjects! Teachers and students will love it.

A lot of people think they could never play an instrument, and a lot of people think they could
never program. So when they hear that you deal with both things together, they think that it
could be the most intangible thing ever. But when you show them your live coded performance,
they enjoy it or, at least, find it interesting. And when you spend just a few minutes showing them
your code and explaining what you're doing, they start to think “Hey, | could learn that.”

pietrobapthysthe.bandcamp.com

52 Chapter 3

Lina Bautista performing as Linalab.

Image credit: Ivan Paz

Expositions 53

Lina Bautista
Spain

For me, live coding is a practice in which the brain has a unique connection with the music and
the public. It is a particular way to show your thoughts. When | started with live coding, | was just
curious about different performative practices, in search of my way. What | found is that live coding
really makes me perform in a singular way. | can almost hear my brain going fast, making decisions
and reacting to sounds. Live coding is also about the community. | think it is a safe space to learn,
make mistakes, get support from others, and have fun.

| think that my role in the community has been about encouraging people to get into live
coding by performing in different contexts and through connecting people. | started TOPLAP
Barcelona along with Ivan Paz, and since then, the community has been growing with the care
and ideas as | learned it: sharing and working together, although in the community we do not all
use the same tools or play the same musical genre.

My performing style is basically starting from scratch and using just a few lines of code during
the session. In this way | try to make good sessions with a few elements, and | try to make the
code simple and understandable so the general public can feel more included, encouraging them
to do the same.

I’'m aware that live coding is moving faster into the mainstream. We can perceive that in our
context. I've worked hard to explain to institutions, festivals, and projects that live coding is not only
adding some code to the screen. It is about the way you do things and about a community that
works in a particular way. | also see that each time more live coders develop their own tools, lan-
guages, and libraries. | see more relationships between hardware and tools, such as the use of artifi-
cial intelligence (Al), for example. | think all of that will take live coding to new and exciting places.

Some people just enjoy a session, like an algorave, because it is a kind of geeky party. They
feel they are in The Matrix surrounded by code; they do not feel the need to understand the exact
meaning of it all. | have also seen that some people feel excluded because they don’t know what
the meaning of the code is. They believe we're a closed and select group of nerds where they
don’t belong. It is here where | think we have to work harder.

linalab.com

3 U~ v . PR AL LAV 7
297 iowGlobalDensity >> setPattern "drum® "LA4110" >> setPattern "drum2” "LA
kitPhaser@1 4 7 >> setEns ensGorgeNoise 7 17

288 pf
389 variedGiubalDensity

390 |f >> variedGlobalDensity >> setPattern "drum" "LA4111" >> setPattern "drum2” "LA3121" >»
setKit kitPlate01 4 7 >> setEns ensKArp2 17 17
391 lowGlobalDensity

392 superlowGlobalDensity

WRBRATT
3120" >> sotKic

:quit<Enter> to exit Vim 390,1 99%

*renick@oodaiko:~/hask" 02:27 85-Jun-16
3335), (1.08833333333333335,1.416666666666667) , (1.416666666666667, 1.7501000000000002), (1.7500000
1000000002, 2.0833333333333335), (2.0833333333333335, 2.416666666666667) . (2.416666666666667 ~ """
1000000000004) , (2.7500000000000004, 3.0000000000000004)1})]}

'10.0,0.01

>>Player percl has been paused.
Player -~< been paused.
Playerf 7~ n paused.
Playe’s iy ke o
Play, f

P

sag -
2 ; ‘ﬁ))))v\\\.\.
- oL 9 ‘i-

>\

» AW
aMap s :
F333555% .
IR
|

b

’
5

Photo by Jun Yokoyama

Expositions 55

Renick Bell
US/Japan

| perform with my Conductive system, a Haskell library for live coding autonomous processes
and generating patterns of things like rhythm, samples, or event density. | use it to create large
volumes of patterns and audition them for audiences; the sounds are new for them and me. | am
beginning to use it to control hardware synths and interact with other people’s systems.

I have been making electronic music for over twenty-five years. Around 2003, frustration that
| couldn’t perform it live like | had in punk bands led me to return to computer music languages
from university, like Csound and SuperCollider. In graduate school | developed a generative music
system with a graphic interface that worked technically but was unsatisfying to play with a mouse.
Thinking the limitations came from the graphical user interface (GUI) library, | sought better tool
kits in different languages. | had read Alex McLean'’s “Hacking Perl in Nightclubs” in 2004; it had
seemed novel and hilarious, but | didn’t consider trying it. However, by 2007 | realized | was mak-
ing music with code almost as well as | had with the GUI, and the potential became clear: using
my typing skills with the enormous powers of abstraction available through live coding, | could
go far beyond. | had been watching McLean blogs about Tidal development and wanted to use
it, but as it wasn’t publicly available then, | started coding Conductive.

As Conductive became familiar, | imagined how the possibilities could be increased. Simul-
taneously, the software sometimes demonstrated possibilities | hadn’t imagined, changing my
direction for Conductive. This has given me an inexhaustible list of things to try in performance
and features in Conductive to add or improve.

| perform often in Japan, where people increasingly know about live coding or practice it. Of
several algoraves we have held in Japan, there have been two in Tokyo where people had to be
turned away at the door. | also have many chances to perform internationally outside of the live
coding community and observe an increasing interest in live coding.

| see three challenges for live coding based on comments from outside of the community. First,
some perceive a lack of immediacy, believing that live coding is not developing as quickly or as
much as other electronic music, live or DJ. Second, some feel that live coding emphasizes process
to the detriment of sonic results, neglecting aesthetic aspects like the mix of voices in arrange-
ments and other factors related to current developments in various subgenres. Third, recognizing
that live coding makes possible things that are hard or impossible for traditional tools, some say that
live coding misses opportunities to explore new types of music and express frustration over live
coding that incompletely imitates existing genres rather than further exploring the unique territory
live coders can access. While we can argue with these perceptions, taking them seriously can be
useful. Live coding can progress both technically and in how it is perceived in the electronic music
world by accepting these challenges.

renickbell.net

56
Chapter 3

0.5, 8.5), dur=0.25, amp=0.75 * var([1, @], 4)
32, dur=0.5, amp=P(1, (@ 25, 0.5]] * @
0.05), 32), lpfex

.5 var.)
pvar([150, 230), 32)

.+, pan=puhite(
var([?.5. 31,

play('v', rate
rate<0.5, bend=expvar([0.95,

('w', sample=z
)
star(dur-4, 1p’-150, lprat. tremolo=2, amp=0.5)
play('S*, saw.ie=3, dur=0 5, 1pf=expvar([2084 6000], 114, 0]), 1pr 0.5, amp=P(0.5, 1)
vor([1, 815 [3- 2 Lo oMt k)
xd »>> play('x’, ro:iz«1.05, dur=P[i, 0.5 0.5, 1, 11 = 1, 1pf-"30, amp=0.7 < var([1,], [64, 32
1]) * var.all_brk)
1k >> play('x’, ur=1, dela:-2.75, 2 pLe, ¢ 59 kd.iep ¥ var.sd k)|
ok >> play('x’, »ample=S, dur=4,3 * ., dar
sn »> play(‘'H', iample=1, echo=P[0, ©.25, {

{ »» play(‘V', sample=1, dur=1, delay= [0,
h1 »> play('-', sample=2, echo P[0.25, 0 25
128, 64, 64]) * var.all brk)
sample=1, rate=P[1, expvai (" « 1], dur=0.%, 1pf=P[200, 60O, 450, 804], amp e(1, @,

var.als brk)
e, Micmv.a: J0p 0.1 ¢ var([o, 1], |
p=0.6 vir.al)_brk)
time-0.25, dur var([2,

1, 4, 2], 64), delay-9.5, amp-9.45

bb >> play(‘b’
expvar([9.5, ¢.8]), 64) * 1)

Group(br, pc, on =

x3 >> creep P[0,3
ji 1.05 . .
expvar([0.75, 1.5) 05, pan-PSine(2), bend-P(8, ©.85), lpf P[]
»(5), 1pf-8000, amp-var((e,1],[¢

x5 space v 1.2

ve riav('. w'. rate= (n 1
. 0, (31, 12

Photo by Ashlae Blum(e)

Expositions 57

Ashlae Blum(e)

As a musician with a background in live musical performance as well as engineering physics, live
coding is a natural extension of my musical expression and artistic practice. For me it feels almost
the same to create music with live coding as it does with an instrument, minus the tactile feel of
playing the actual instrument itself and plus a lot more prep work beforehand. | like to experi-
ment with a variety of tools and workflows, and my most fluent languages are currently FoxDot,
SuperCollider, TidalCycles, and Hydra, in that order.

As a trans nonbinary musician, I've experienced lots of “othering” in the music industry. After
hitting the glass ceiling there a few too many times, | began to question my identity as a musician
and wanted to redefine the role music had in my life. | decided that if | could still have an emotional
relationship with music, even if | was “just” programming it, | was actually meant to be a musician,
and here we are three years later. | started live coding by myself. | just kind of accidentally learned
about it on the internet while | was teaching myself Python and, after doing it for a year, was
shocked to find that there were actually many people who also live code and that the community
was so international. | felt like 1'd discovered a kind of lost Atlantis that | had never experienced in
other music scenes I'd previously been part of.

One thing I've been working on is a methodology for live coding that uses a nonlinear, layered
approach to performance inspired by the modular impressions I've arrived at through making
music with live coding software. It draws on aspects of live coding, music production and perfor-
mance, and methods from physics. I've termed the process Modular Geometricity.

My system is an approach or way of thinking about the creative process rather than a specific
set of tools. (I guess the tools are the mind.) Since that which we create is but a reflection of our
thoughts and the actual software/hardware we are working with (i.e., other people’s minds), it is
inherently a collaborative effort, even if one is unaware of the history of technology.

All rivers flow to the sea; | think that since most live coding software stems from principles that
are deeply embedded in the history of music and technology, fundamentally, most of the current
live coding systems are just iterations of the same process. Most of this relates more to commu-
nications theory and electrical engineering, | think, than to music itself.

How people see live coding is dependent upon the tech literacy of the audience, which is also
inherently dependent upon factors such as economic mobility and demographic representation.
Currently, it is an underground scene, which will likely shift if pop and mass media get their hands
on it. Generally, | think the idea of coding as art is still quite foreign or even to-be-avoided by the
masses. This is okay because it will change.

| see the future of live coding through shader-patterned glasses.

ashlaeblume.bandcamp.com

58

Photo by Udo Siegfried

Chapter 3

Expositions 59

Alexandra Cardenas
Colombia/Germany

Live coding is a technique to create live generative art. As a composer, | was immediately attracted
to it because it offers the capability to think and create in a way that is close to my own musical
thought. From the beginning | was highly interested in music, mathematics, live electronics, real-
time compositions, electroacoustic music, and electronic music. At the same time, my interests
let me discover different traditional kinds of music from around the world. Through the study of
African, Caribbean, and academic percussion, | got deeply interested in the patterning of sounds
to create different kinds of music. Through my studies in electroacoustic music and orchestration,
| studied with a passion different ways to create and mix sounds in order to create music.

After many years of working with Max/MSP, | found SuperCollider. Working with code offered
me the opportunity to get rid of any graphic metaphor and allowed me to describe my musical
ideas with a language much closer to what | had in mind—something different than digital boxes
and cables and even different than expensive physical electronic instruments. Feeling so comfort-
able describing music in this way, | spent a couple of years learning the basics of SuperCollider.
Even though | was passionate about it, it was a complicated language for me to learn. Thanks to
SuperCollider | discovered live coding, and with it | could fulfill my dream of being able to gen-
erate infinite sounds, forms, and textures in a live manner. | always wanted my music to sound
different every time it was played.

Since the beginning, | have been annoyed by the linearity of time and the linearity of music. |
feel | am still beginning on this journey of discovering. | will always feel like a rookie when it comes
to creating live coded music. And | love this feeling because | know live coding offers infinite
opportunities for music, art, and our society. As a touring live coder, | have traveled around the
world teaching and performing my music, helping to exchange knowledge and create communi-
ties around live coding, and founding several TOPLAP nodes.

http://tiemposdelruido.toplap.org/

http://tiemposdelruido.toplap.org/

60
Chapter 3

& § sound
o dola

4§ degradedy 0.4 %

2 § soulDryr> 8 6
- /

a1, Context| Prllude
1.Context| Prelude
1.Context]| Prejuds e

Photo by Antonio Roberts

Expositions 61

Lucy Cheesman
SONA, UK

Hi, I'm Lucy, and I'm a live coder.

I've been making solo music as Heavy Lifting using TidalCycles since 2016. I still kind of think
of myself as a newbie even though four years (and counting) is a pretty long time. | think in part
it's because | feel there is always so much more to learn and do. | teach a lot of workshops on
Tidal, but | feel like I'm learning as much as the participants every time; my relationship with the
computer changes each time we ask a question.

| use various languages, depending on what I'm doing (I've done performances with Tidal,
FoxDot, SuperCollider, ixi lang, and Orca), but I'm always drawn back to Tidal, probably because
of how it thinks about time and the seemingly infinite possibilities it gives you for sample manipu-
lation. I've always been interested in sampling as a means of making music, particularly taking
sounds that are familiar and reusing them in perhaps unfamiliar contexts; Tidal lets me do this in
powerful and unexpected ways.

Sometimes my performances are serious or maybe explore some kind of lofty themes, but
more often I'm just laughing at my own jokes. At the end of 2015, | went to a live coding work-
shop for women run by Joanne Armitage and Shelly Knotts, who told us to embrace error; | took
that to heart. | think by removing the pressure to be accurate, live coding creates a pretty unique
environment for experimentation. In my case | use that freedom to be quite silly; in the picture
I’'m performing a set using only samples from that year’s Eurovision Song Contest (it was happen-
ing on the same night), accompanied by some beautiful visuals by Antonio Roberts. | think that
writing code can be seen as a superserious dark art, and | hope that irreverent and fun live coding
performances can go some way to dispelling that myth.

I'm lucky enough to live in Sheffield, where there is a really strong live coding scene fostered
by Alex McLean (a.k.a. yaxu); we have regular algoraves and the wonderful AlgoMech festival. |
try to do my bit by running gigs, meetups, and workshops. | was given so much support starting
out in live coding, and | really want to pass that on to other people. One of the key features of
live coding to me is that openness, and I'm not just talking about free software but the inten-
tion to collaborate in nonhierarchical and noncompetitive ways. The next step is to dismantle
capitalism—see you there <3.

heavy-lifting.org

62 Chapter 3

° [3 Choreo-Graphic Coding x 4
<« C O File i i je 2_3x3/micro_ I hicau.htm!
L . Q n m e
S Q
c Ien agqs

(R (] | Bomenis GConsol Sowces Netwok Paformance Memoy Appication Secufty Auits Wb Scraper -

e cC + 3 @ Screenshots @ Memory § =
[wcomstawars Tso0oms 0me ascams £ 0me w00 o soo0are ssmam wowcoms eso00 K e :

tepesting.lepentng epeating lepeating. tepe
e e

o R MU s oo e
= e e o e e o o e e o

S000ms 10000ms | rhen—- aaann == prre— Erore— B — T i
T s seoomoms Sowem Govom o Tiooims weooms ooy so00ms 550

> Frames L

* oacons Q

> Timings Q. =

¥ Main — fle://Users joanachicau a n cm g

— e droun

P rind o0 NGQKHCmICCMQPWUIASW=39686ih=008dpr=16 | 1]

@ 2 2 @ Usteners[0- 15] @ GPU Memory

o —
b= - L

Summary Bottom-Up CallTee EventLog

fepeating:
tself

Screenshot of Joana Chicau live coding visuals in a web browser

ch queries:
oring bodies;

raction mirroring bodies;
1lel bodies; // parallellism:
ring acts gestures;

affinity; correspondence; in between.

ment .getElementById('som') .play():
rom(docunent . querySelectorAll("h3 =)

ntHeadings = Array.f:
2 g innerText))

entHeadings.map(x => console.log(x.

score = document.createElement("p"):
new score = document.createTextNode(
e.appendChild(new_score);

ment.getElementById("score") .ap]

"this another score");
pendChild(score);
e > collect a search queries into a new score.

pe text > accumulats

| seach query:

ay="10";

nt='0";

its=new Array();

|]="Choreography is ghostly";
.]="its presence haunted by absence
Layers forming and dissolving";
|]="scripting a network of relations”
i]="like particles all in movement.";
i]="The movement that manifests within and withoujfthe fr|
=g

}]="Live performance emphasizes the agency of
)]="desires, orientations, inclinations, an
0]="Tools to observe ecosystems,";
|1]="practices of attention, listening .. bre
|2]="Framing and scripting";

|3)="provoking new layouts, alternate relatiorp
l4)="and constellations.";

|5]="Framing and dissolving, how many layers?]
16]=""

Photo by Marco de Swart

Expositions 63

Joana Chicau
The Netherlands/UK/Portugal

In 2016 | started a transdisciplinary research project that interweaves web-programming tools
and environments with performance and choreographic practices. Since then | have been inves-
tigating diverse notation systems from both dance and web programming, which | then merge
into a hybrid form of algorithmic composition: a “choreo-graphic-code” that brings new mean-
ing and produces a new imaginary around the act of coding.

Choreography in the context of this research project is seen as a writing or a metalinguistic
space for thinking movement and countermovement in the (de)construction of web tools and
digital media environments. The liveness of code writing became a way to activate the choreo-
graphic-code, exposing various processes and dynamics of web computing while enhancing the
physicality of the body—the body that is in constant friction between the constative (reality
describing) and performative (reality producing). Engaging with different forms of choreographic
thinking has been a way to bridge and enhance the somatic and semantic within coding.

| believe improvisation is key in live coding practices in general, and within my performances |
hope to take this notion both as a technical and physical condition and bind the procedural with
the conceptual and corporeal layers of live coding.

My practice reflects on the intersection of the body with the constructed, designed, pro-
grammed environment. It aims at creating new alternative circuits within the technological
sphere of programming languages and possible encounters with the sensorimotor structures that
regulate our bodies and movements, hopefully contributing to a different mode of embodying
live coding tools and systems of notation and of appropriating digital technologjies.

Kate Sicchio has been one of my most important sources of inspiration. A few years ago while |
was still writing my thesis, | was introduced to Kate by Alex McLean. Later we all met in person at
the ICLC 2016! I still try to follow her work as closely as possible. Another important aspect of my
practice is the use of coding languages and its performative instance to build diverse, inclusive,
and plural discourses, as well as a site for nurturing collaborative and open work. Such critical
thinking and activism on gender equality and inclusion have been brought to discussion within
the community by Shelly Knotts and Joanne Armitage, among other feminist live coders. | feel
very close to their thinking and have already engaged in public discussions with them.

As in most live coding practices, my system and methodology focus on the use of free/libre
open-source models and are concerned with widening the ways in which digital media and com-
putation are presented and made accessible to the public.

joanachicau.com
jobcb.github.io

64 Chapter 3

@ Periodic Table Sequencer e e =
c C 0 @ Secure | https:/, i ng.bluemis 9 138 b159b37¢
" algorave sheffield » Add a dest
u Be 'I E Switch to Qasm Editor ibmqx2 @ My Units: 60 @ Experir
W e “l

4 alu]m—{p)—n—u—
| la = o v |e W lelle| v lal = R R

aln — -

R sty z N Mo T R4 RN Pd @ m
' . | v
I
cs B . HE T w Re .v 3 Au Hg nI a[ﬁlm)—n—;\()—H
aia] z v
N B 1 A

eadl
algoravethmic: quantumsequencer.scd (/data/sc3code/LC1/patches/sequencescape) - SuperCollider IDE
= © quantumsequencer.scd

0 snaretaskt RESULT = ©
1 hattasil § i ing.at(c[1][0]. copyRange(1,5)); [[107, 546 1, 0.074305555
2 scaredangry . RESULT = 0

3 //€[11[0] . copyRange(1,5). class [7,697, 0.00486111111
RESULT = @

[[107, 496 7, 0.074305555
RESULT = 0

dancehallinastomo,
4 elemental

c..copyRange(1, ¢.size).do{!
i ing[val [0

Ivall var which =
1. copyRange(1,5)]; ~auantumprobabilities[which] =

5 ravebasst lopoesh il itk
= - ? val[1].asFloat; };

6 voice 1 .50d

7 volce 2

8 aseqt

C [107, 546], 0.074305555
RESULT = 0
C [107, 496], 0.074305555
RESULT = 0

ilities = ~q wprobabiliti

, "00011", "00100' 0011¢ 00111", C [457, 646], 0.317361111
"01101", "10000", "1000: ", "10011", "10100", || RESULT = @
[[757, 546 1, 0.525694444.
RESULT = 0
[[557, 546], 0.386805555
RESULT = 0
[57, 646], 0.0395833333
RESULT = 0
[[107, 546], 0.074305555
RESULT = 0

~scale =
(24*([0]++(: ilities.integrats
e-2))) + 48).midicps;

Range(,~quantunprobabilities.siz

SynthDef(\qubitcrash, {lout=0 freqe440 amp=0.1 dur=0.1 pansdl

C [257, 546 1, 0.178472222
| RESULT = 0

Periodic table sequencer and IBM six qubit frontend in SuperCollider. Image credit: Nick Collins
(Live Dog, Inc.)

Expositions 65

Nick Collins
Durham University, UK
composerprogrammer.com

Jack Code’s Rebellion

A single character change in text can have enormous consequences. In Terry Gilliam’s adminis-
trative nightmare Trazil (1985), T becomes B, Tuttle becomes Buttle, exchanging life and death;
in the page title, Jack Cade’s fifteenth-century rebellion takes on a contemporary repercussion.
From Shakespeare’s Henry VI, part 2, subtly rewritten, we now find a beautiful anticipation of the
theater of live code: “These hands are free from guiltless blood-shedding, This breast from har-
bouring foul deceitful thoughts. 0, let me livel Code: | feel remorse in myself with his words but
I'll bridle it; he shall die, an it be but for ‘pleading so well for his life . . ."””*

Changing your mind while you act in the world is nothing new; it is at the heart of survival and
improvisation, an essential part of the history of humankind, with language’s versatile generativ-
ity a great creative backdrop. But explicit interaction via a computer programming language, as
artistic activity often framed on a concert stage, was a step change in intent of which | have been
privileged to be some small cog.

The historical precedents are fascinating, from mathematics and games, through role play-
ing to drama, touching on political systems and the cultural history of algorithms. Varied topics
from human life can underlie live coding dramaturgy, and this wider net of human subjects has
provided a rich grounding for much of my own live coding work. In the algorithmic choreogra-
phy laptop duo Wrongheaded (with Matthew Yee-King), once-off performances included a live
teddy bear dissection with liberal tomato sauce, a séance evoking the ghost of Alan Turing, and
“The Gospel according to Wrongheaded.”* A more recent and | hope never fully formed project,
Live Dog, Inc., has drawn on varied inspirations to motivate improvisational coding, from satire
of existing music (Johnny Bash’s “Live from Fortran Prison,” HadlORead’s “Discothick”) to hard
science including a live-code-controlled periodic table and six-qubit quantum computer experi-
ment sequencers.

I wonder if what | think about live coding has changed over the years; that would seem an
entirely appropriate state of affairs. | revisit my attitude to live coding once in a while, though |
wouldn’t like to reinvent the repeal. Yet re:rerereading some “thoughts on live coding” | wrote
quickly in 2004, | find that | wouldn’t change the text so much, and the profoundly deep live
coding insight | crave remains beautifully elusive. Perhaps | should leave behind the occupation
of live coder, for as a bezzific proverbial 1857 poem cries, “A change is as good as a zest,”® where
Tisto Bas Ris to Z. As Click Nilson once wrote, “ ”.’

66 Chapter 3

tH2 3 cHd \wasTeR
P2 FAN PANA
T A

Malitzin Cortes, “Generative promenade or Nightmare catcher,” Modern Art Museum, Mexico City, 2019.
Photo by Malitzin Cortes

ACI Asia Culture Center. Foodhack 2019 ISEA Korea 2019
Photo by Asia Culture Center

Expositions 67

Malitzin Cortes (CNDSD)
TOPLAP Mexico

Live Cinema Coding
Nonlinear stories, abstraction, and audiovisual synesthesia in the contemporary context of code

In the 1960s, artists and filmmakers began to challenge the conventions of audiovisual language,
creating more participatory roles for the spectator. The constant development of design, film,
and computational technologies pushed these works further forward. They left linear, classic
cinematographic language behind, taking film outside cinemas and into art galleries, abandoned
factories, and outdoors, implementing different forms of experimentation through multiscreen
projections. A great reference for what we can see today, which in 2020 is seen from a distance
with our festivals of electronic music and digital art and the “language of new media,”® is Light
Music (1975) by Lis Rhodes. It is composed of two “films” projected in a smoky room, with an
intense sound composition created from flashing patterns on the screen, demonstrating that
emotional, perceptual, and immersive experience is nothing new.

Live cinema coding is a hybridization between live coding and more established practices of
expanded cinema and live cinema, generating new stories and open interpretation. These prac-
tices have their own tools, with possibilities that are not only technological but also aesthetic.
On-the-fly programming creates sound phenomena conducive to these new possibilities and is
able to generate music of any genre. Visually, it has joined the world of generative creativity and
computational thinking in the arts (creative coding) and is available to all artists, not only those
specialized in science and technology.

The creative work and research that | have carried out with digital artist and programmer Ivan
Abreu over several years has combined our technical skills and artistic passion for the console, not
only as a way to preproduce audiovisual content, from the keyboard and logic of a program, but
also to tell stories and compose music that emerges from, and through, algorithms. In this way
we have used different tools for live coding, such as SuperCollider, Hydra, Orca, and Pure Data,
but above all, for its efficiency, community, and functional way of creating and ordering anything
in time, we use TidalCycles. It can generate complexity from very little code, and we have found
enormous poetry in the syntax that takes us from within to achieve a sound and visual idea. From
the mind to the algorithm and then to the screen, a palindromic pattern can be sonic and/or
visual, evoked by typing Tidal’s palindrome function from the keyboard. We are now developing
and contributing systems back to the community, not only to understand the complexity and
compositional beauty of Tidal but also to find ways to hybridize different tools and programming
languages with a single reason: to tell intense stories with sound, light, and images in real time.

malitzincortes.net
https://vimeo.com/cndsd

https://vimeo.com/cndsd

Photo by Mamady Diarra

R
g
L D

Photo by Mamady Diarra

Expositions 69

Mamady Diarra
France

Live coding? For me this is really brand new. | had already learned some programming, nothing
more. . . . | discovered live coding while watching an interview with someone talking about mak-
ing music through code with a system called Opusmodus. The price of this software calmed my
interest, but | was curious. Then along the way, | started to find out more. A friend told me about
a live coding workshop that would take place in Paris organized by NO School Nevers! | went for
it without hesitation. | was excited to meet the creator of the open-source software TidalCycles
(Alex McLean), which | use most often in live coding. The coding aspect, the accessibility, and
even the active, caring community led me to use this software over any other.

I’'m always excited to attend an event that brings together other live coders. It's always infor-
mative and really interesting. My first live coding gig was at the 7° Festival Ambient de Paris in
September 2020, where people gathered outside of the live coding scene with people who had
mostly never heard of live coding. | was surprised. The audience was receptive and came to ask
me questions at the end. It’s heartwarming to see how live coding can affect so many people.

The live coding system is an experimental field, constantly questioning itself. This is unique to
information technology and to tech in general. But it is true that in the live coding system there
is a lot more unpredictability. Sometimes | feel like | spend more time engineering . . . solving
problems . . . It’s alive!

https://afalfl.bandcamp.com/

https://afalfl.bandcamp.com/

Chapter 3

70

ﬂ

ﬂ;:ﬂ AR b
m m f:,;

ti

'1“\‘“
T

m
!

Photo by Claudio Donaggio

Expositions 71

Claudio Donaggio
TOPLAP ltalia

The year 2015 was a difficult one for me, both physically and mentally. One day that year | saw a
video on YouTube by Andrew Sorensen. At the time, | had never written a line of code in my life
but | was fascinated. | started immediately with Sonic Pi. Live coding and, even more, the com-
munity of live coders around the globe helped me to gain enough self-confidence to beat my
own demons and believe in myself. And that’s how | started. To me, live coding means “complete
freedom from genre and labels,” which is what | have always been looking for in musical and
artistic terms. Being able to talk with the machine through code and improvise electronic music
is the core essence of live coding practice, in my opinion.

I like to work with different environments and languages. | would not know where to start in
order to create a system like Tidal or Sonic Pi, but | try to be as much of a polyglot live coder as
possible! I am one of the administrators of the Live Coding Italia community on Facebook and
Telegram. | hope one day that my contribution will be to have spread the practice around as
much as possible in my own country.

My hope is that live coding will not only be designated to the academic world but be adopted,
as a technique, by more performers and artists. Nothing against it, but “Be wary of institutions”
is my motto. | do think more and more people will become interested in the possibilities of live
coding, and | try to help newcomers as much as the community helped me when | started out.

I've seen different reactions from people to live coding. At first they are like “This is something
and then when they experience an algorave, they’re gobsmacked! Generally, | think it
is perceived as difficult to understand, initially. That’s why it is always good to start a performance
event with a talk, in my own opinion and experience.

1

for nerds

https://twitter.com/Etol_livecoding

https://twitter.com/Etol_livecoding

72

{*} EarSketch

CONTENT MANAGER @D DIGITAL AUDIO WORKSTATION

<>SCRIPTS B API

EFFECTS®

Fuer s M
Aists v Gemres v instrume.. v
Semes ¥ emme- T o
Show only © Add
s M
% R T

T] P e) TR
EDM_ANALOGPLUCK > i e e oot St St e & + o o

o G Moruwoonsuss | R _ M
EDM_BLEEPLEAD > i
EDM_CHORDPART > || cooeeoitor OB BLOCKS MODE RUN

EDM_DRUMBEATPART M

1 from earsketch tmport

RD_EDM_DRUMBEATPART.1 > - & 2
" 3 nit()

RD_EDM_DRUMBEATPART_2 © 7| LI
RD_EOM_DRUMBEATPART.3 > - & 2

6 # Add Sounds
RD_EOM_DRUMBEATPART.A > = 7 fitMedia(RD_UK_HOUSE MAINBEAT 8, 1, 1, 5)

8 fitMedia(RD_POP_SYNTHBASS 6, 2, 1, 9
RD_EOM_DRUMBEATPART.S > 9 fitMedia(YG_RNB_TAMBOURINE_1, 4, 1, 9)

10 fitMedia(YG_FUNK_CONGAS_3, 5, 1, 5)
RD_EDM_ORUMBEATPARTS » - © 11 fitMedia(YG_FUNK HIHAT 2, 6, 'S, 9)

12 fitMedia(RD_POP_TB303LEAD 3, 7, 5, 9)
RD_EDM_DRUMBEATPART.7 » - 13

R 14 # Effects fade in

RiD-EOM.DRUMBEATPART.S © 15 setEffect(2, VOLUME,GAIN, -20, 1, 6, 5) 4
RD_EDM_DRUMBEATPARTO » = © 0

17 #Flls
RD_EDM_DRUMBEATPARTI0 > = ©
EDM_DRUMROLL_BREAK >
EDM_ELECTRICLEAD >

Image credit: Georgia Institute of Technology

Chapter 3

4.3: Control Flow v

Control Flow |

lere is another example of how you can use for |

Click the play button

to watch video

We can create repetiion in our music by typing
fitHedia() again and again, withdifferent measure
numbers

python code ;

#

script_name: Drum beat (no loops)

+

author: The EarSketch Team

*
description: Musical repetition c
reated without code loops

2

#Setu
from earsketch import *

TEACHERS HELP / CONTACT

Expositions 73

Jason Freeman
Georgia Institute of Technology, US

As both an artist and a researcher, | use technology to engage others in creative and collaborative
musical activities. While | do occasionally perform myself and create music for professional musi-
cians to perform, | far prefer to devise contexts in which anyone can express themselves musically.

I was initially drawn to live coding as a performer (in the early 2000s) because | could reveal
the often arcane practice of algorithmic composition to an audience in a high-risk, improvisatory
way. In those early performances, audiences were impressed by the complexity of what | was
doing, but they did not understand it at all. | found this dispiriting and abandoned live coding
altogether for a few years. Beginning in the late 2000s, | found new ways to approach live cod-
ing that were more in sync with my own sensibilities. | developed new environments that shared
the experience of musical coding with others instead of sharing my screen with an audience.

Live coding can be a virtuosic activity that is the culmination of years of practice. It can also
be a test kitchen that pushes the design boundaries of computer music languages. My practice
is neither virtuosic nor innovative in these ways. Instead, | explore how simple systems that are
grounded in familiar paradigms can get novices excited about creative coding.

My students and colleagues and | have created a couple of environments over the years, but
my current focus is EarSketch (created with Brian Magerko and many others). It is designed for
kids who don’t know much about music or coding. You write code in Python or JavaScript to
remix loops from an audio library, and it shows the results of executing your code in a multitrack
audio view. It very quickly gets kids excited about music, and coding, and sharing what they’ve
done with their friends (as the photo illustrates). While it does support live coding, it’s the coding
(not the liveness) that is the focus.

| admire the many virtuosic live coders out there, but I'm not one myself. | don’t perform
often as a live coder anymore and when | do, it is usually in an educational rather than a pure
performance context. For me, the classroom is the most exciting place for code to be right now,
whether live or not.

EarSketch has a much lower barrier of entry (both musically and computationally) but also a
much lower ceiling than other systems. It’s also deeply situated in commercial music—both the
library of audio loops it uses and the DAW paradigm that inspires both the interface and the pro-
gramming API.

http://earsketch.gatech.edu

http://earsketch.gatech.edu

Photo by Federico Sande Novo. Courtesy of Museo de Arte Moderno de Buenos Aires.

Photo by Nahuel Zeta

Expositions 75

Flor de Fuego
Facultad de Artes, Universidad de La Plata, Buenos Aires, Argentina

Nowadays, live coding is one of the most important practices for me. | explore and try to hybridize
sound/poetry/visual/body in my live coding performances. | was prompted to engage in this research
from wanting to create audio/visual sets and then found a whole world of limitless possibilities.

I’'m an active collaborator within the Hydra community (software made by Olivia Jack) and
help organize the Hydra meetup. | give a lot of talks and workshops around this software and also
tend to explore and research it. | teach Hydra in high school for teenagers, and I’'m also an active
member of the CLIC (Live Coders Collective/Colectivo de Live Coders). | think my contribution to
live coding practices is related to education but also art because | have an art university education
background, and I'm really influenced by that.

| do live coding alone, but I'm also part of collaborative projects, such as cOd3 p03try (Rapo
and Flor de Fuego), and lately have been researching potential connections between net.art and
Hydra, together with Naoto Hieda. | also participate in different algoraves from mostly Latin
American communities.

| imagine live coding will further develop, with more collaborative interactions and hybrid per-
formances and with many more people getting involved. Currently, | think people usually don’t
understand what live coding is until they see a live performance, and when that happens they seem
very curious about it. Is not enough to explain it; you have to experience a live show.

https://flordefuego.github.io/

https://flordefuego.github.io/

Chapter 3

76

Image credit: Molly Gunn and Westley Hennigh-Palermo

Expositions 77

Sarah Groff Hennigh-Palermo
Codie, US

| started live coding via Live Code NYC meetings in 2017. The meetings were essentially an
excuse to see friends and yell about compilers. The “actually performing” part | was less sure
about. Then Kate Sicchio convinced me that if | performed with her, | would get to write a visuals
framework. Being the kind of girl who is unable to turn down the chance to write an SVG (scal-
able vector graphics) framework in ClojureScript, | agreed. We performed once, | fell in love, and
our collective, Codie, was born. The third member, Melody Loveless, joined us a few months later.

When we started, the New York scene was still relatively new. Kate had moved to New York
from Sheffield and founded the group with a few other folks. This was a great opportunity for us
because the group was small enough to allow everyone to play every show they wanted, and so
in 2018, we played something like twenty-five or thirty shows. These were mostly in dark bars in
Bushwick, but we also did some more reputable venues.

| think the New York scene then was, for better and worse, a bit “artier” than in some other
places—people understand our shows as art events and expect a lot more weirdness than bangers,
per se. It also meant that there was a lot of focus on pairing musicians and visualists before shows
and sometimes even practicing together. Codie takes this to an extreme in that we practice a lot;
we're a proper collective. | like to think we were an example for the rest of the scene.

This approach—rather than visualists showing up the day of and asking who wants vis—is
really vital because it opens a space for deep collaboration. Instead of linking together sound and
light through audioreactive visuals, which | always find a bit dull, we are able to link through a
basic agreed rhythm and then play off one another in a way that’s only really possible when you
play together a lot. It makes for a really rich dialogue. We’ve also elaborated on it in short films
we’ve done together.

This way of computing also helps me “unthink” the engineering | do as my day job. It allows
for a relationship with computers where they are more like plants, rewarding cultivation and
experimentation. That experience then flows into my nonperformance art, which has become
a counterpractice to the sort of technical mystification and dystopic Al projects that are popular
now. I'm looking to unfold a space outside new media hucksterism and unquestioning engineer-
ing positivism.

In the future I would like to see more attention paid to the seriousness of live vis. It still feels like
we are the little sisters in a lot of cases. There are not always vis talks at conferences, and at shows
you often get the setup equivalent of playing your tunes through a boom box. But it’s not like I'm
organizing anything these days, so maybe | should step up instead of just wishing!

http://art.sarahghp.com/

http://art.sarahghp.com/

78 Chapter 3

@ p-code-magazine.github.io

OREAROFRONT
O OCR

OLoop

440 ~~

440 ~~ 882<< ~~=="2

440 ~~

Fork me on GitHub Magazine

Screenshot by Akihiro Kubota

Expositions 79

HAUS++
(Hirozumi Takeda, Yosuke Hayashi, Takanobu Inafuku + Akihiro Kubota), Japan

P-Code is a minimal language for live coding sound performance.’ The code is interpreted from
left to right, divided into numbers and other symbols, and then executed. All symbols that cannot
be interpreted are treated as white noise, making it an error-free language.

The syntax of P-Code is minimal, but the input methods are diverse. You can write code in a
variety of ways, including via keyboard, image optical character recognition, handwritten input,
and voice input.

Collective live coding sessions with multiple participants are also possible. P-Code Playground
is a chat environment where the P-Code can be executed. The codes and texts entered by the
participants are recorded, along with the time they are entered, and can be replayed using the
playback function.

R3PL (random regular expression read-eval-print loop), the new runtime environment for
P-Code, now allows input with regular expressions. Code written in regular expressions is, so to
speak, a potential code that is fraught with indeterminacy.

Live coding is a never-ending open challenge to go beyond “improvisation.”

p-code-magazine.github.io

80 Chapter 3

rfreq = segment 1

seq = "{1@7 1@11 1@21 1 1 1 1@3 1@3 1@3 1}¥16"

dg = reduce

chain mod p = sb 8.2 (mod) $ one ©.3 $ shift $ one ©.2 $ shift $ roll e.2
$ dg $ struct seq $ p

cpsDisc minTempo maxTempo

limit

stack [

padon $ slow 3
$ (|+ note (shiftBy 4 $ choose [@,12]))
$ (|+ note (scale "ritusen™ "{8 -2 -4 -1 -3}%16")) $ pad5Sn
samplestart (segment 1 $ range @ 127 $ slow 1@ rand) # midichan 4
sampleend (segment 1.1 $ range @ 127 $ slow 21 rand) # midichan 4
uselter tkr 16! $ stack [
kickOn $ chain (# pad4n) $ pad3n

legato (range ©.5 1 $ shrand 1ee)

, harmoron $ (2 ~>) $ chain (# gain ©.4) $ harmor # note "-12" # speed@@7chan
, perclOon $ often (off (©.8625/2) id) $ chain id % padliln

perfd (segment 1 $ range @ 127 $ shrand 181)

perf7 (segment 1.3 $ range © 127 $ shrand 183)

perf8 (segment 1.25 $ range @ 127 $ shrand 202)

scene (segment (1/2) $ range © sceneRange $ shrand 9991)

harmor cc's

stack [

ccv (rfreq $ ccrand 10 100 133) # filterl

, ccv (rfreq $ ccrand 10 18@ 233) # filter2

, ccv (rfreq $ ccrand @ 127 333) # unidetune

, ccv (rfreq $ ccrand @ 64 433) # phwidth

, (rfreq $ ccrand 40 86 38282) # phspeed
(rfreq $ ccrand 5 127 533) # envattack
(rfreq $ ccrand © 127 7283) # envdecay
(rfreq $ ccrand 1@@ 127 633) # filterlwidth
(rfreq $ ccrand 127 127 733) # filterlenv

(rfreq $ ccrand 180 127 833) # filter2width

(rfreq $ ccrand 127 127 933) # filter2env

(rfreq $ ccrand @ 127 1@33) # timbre

, ccv (rfreq $ ccrand 64 64 1133) # amprel

$ ccrand @ 127 7) # harm

., ccv (rfreq
] # speed@@7chan
1 # cps (140/120/2)

hush

TidalCycles code.
Image credit: Mike Hodnick

Expositions 81

Mike Hodnick

When | first saw TidalCycles, | immediately recognized that it excelled at rhythms and patterns.
Being a programmer and a percussionist, it looked like the perfect match for me. But | saw further
than that; | envisioned that TidalCycles could create endless permutations of complex rhythms
spiraling out of control. | was also tired of making music with a DAW because it was tedious.
TidalCycles helps automate the music | really want to make.

TidalCycles allows you to write computer code to make music, but not just any music; it
allows you to bend and break dozens of patterning and sequencing conventions. Through small
amounts of code, you can create minutes of ever-changing musical patterns. | think it’s arguably
one of the greatest music sequencers ever made.

It's a cliche, but the best musical moments are when accidents happen. TidalCycles exponen-
tially increases the frequency of those accidents not only because it is live code but also because
it requires very little code. Small changes can result in large musical differences. I've built my
musical practice around experimental workflows that exploit specific features or quirks about Tidal-
Cycles; for example, “What if | create ten patterns that focus on TidalCycles’s XYZ this week?”
Through Tidal’s MIDI capabilities, I've also been able to take these experiments to hardware and
software synths, which has really opened up the sonic possibilities.

| started out with the 365TidalPatterns project, as my way of learning Tidal out in public. The
goal was to create a small one-minute pattern every day with the samples | had in my own library.
I never really set out to make those patterns into a final, cohesive project. | valued quantity over
quality. The day-to-day flow made me comfortable with doing small experiments and shelving
them. | had source code and an audio file for every pattern. | learned much later that | could then
go back to those patterns | liked best and shape them into final compositions. | continue that
practice to this day.

The international live coding community is one of the most open and welcoming groups of
people | have ever known. It is continuously helpful, and we all support each other’s efforts to
learn and create. The community also actively works for positive changes in diversity in the digital
arts. Helping build a local community has been challenging. It takes a lot of persistence!

http://kindohm.com/

http://kindohm.com/

82

.

1 Thanks @ 1ot!! 30
3 sing Kickd tk[009 tsgnu/a) gain(!; pane(k) speed (@
kBt 1.

sam
4 new ple b +(drive 150
ead(5 19 36)J

7] bassme
TN st euC U“(“ 5)
xay (ba nt bassune)

e 0075

hape(-l)
16 4100 110 0.6 0.

low
6 2/16 ©)

0
/16) w
f£x(doubl€) £x(d

set lea
le clap- 909 time(2 3/16) gam(z)
o

18

19 ring hats ﬁll(hat dub, M dub_¢ open 1) =
20 new sanplé at_dub’ (1/4 1/8) gain n(0.5) pan(z
21 new sanple aze_M ime(1 1/4) gain(0) fx(reve

16
17 new SamP:

22

23 ring of: £ ets xandomFloat(S 0.1 0.7)

24 ring v + euclid(16 7)

25 new sample feel-you t time(1/16 3/16) shape(1 100 1)
26 set vE beat(vocst 1) fx(delay 5/16 2/16 0. 4)

27
28 new synth saw name(azp) ¢

Photo by Zuzanne Zgierska

Ph
oto by Paulus van Dorsten

L1ay 5/26 326 %) .

Chapter 3

Expositions 83

Timo Hoogland
nl_cl (Netherlands Coding Live), HKU University of the Arts, Utrecht

Before | started to live code electronic music, | was mostly spending my time performing with
drums and programming audiovisual installations and compositions. I've always felt the urge to
perform onstage, so | was looking for ways to translate my programmed audiovisual works to a
live performance. By connecting a controller to the software, | felt disconnected from the music
and sound when only controlling dials, sliders, and presets. While with drumming | can impro-
vise, be in the moment, get into a flow, and have this immediate connection between my move-
ments and the sound, with the controller and computer | felt restrictions that did not improve
my creativity onstage.

My first encounter with live coding was an eye-opener in the sense of how creative coding
and electronic music could be performed. Live coding is a form of expression that most closely
matches my performing style with the drums. Via coding | can combine and explore many fields
of interest, such as polyrhythms and algorithmic composition, in real time. Also, similar to the
drums, | can extend my instrument with new functionalities, adding new flavors to my sound
palette and either rehearsing performances or improvising onstage. On top of that | can also let
the code give me new and unexpected results, as if my instrument is also partially the composer
or band member.

| experimented with systems like Max/MSP, Sonic Pi, and SuperCollider but decided to design
my own language that fits my approach to performing electronic music. The result is Mercury, a
language focusing on the quick expression and communication of live coded audiovisual perfor-
mances. The live coding scene strives for openness, transparency, and inclusiveness, and for that
reason Mercury code has clear and human-readable syntax. This allows the performer to focus on
the composition and keep the audience engaged. The responsive text editor adjusts font size to
keep code visible, similar to the earlier Fluxus live coding environment. Furthermore, the editor
only allows thirty lines of code. This restriction forces me to erase code and make creative choices
during a performance.

In my latest performance, | combine drumming and live coding, exploring ways to improvise
with electronic music while playing an acoustic instrument. The computer functions as a second
performer, listening for patterns played on the drums and making decisions to change the code.

Up until now | think the audience for live coding performances could be categorized into
two groups. One group would be people familiar with code, who mostly understand its effects
on the sound or visuals. The other group consists of people encountering live coding for the
first time and who are surprised by its possibilities. Some may even find it impressive and almost
like “magic.” But as creative coding becomes more widely known and coding is taught in more
places, | see that live coding for its own sake starts to have less impact, forcing artists to start
searching for new live coding approaches or be more critical of their output. In the (near) future,
live coding will surely find its way into a wider variety of genres and disciplines where the focus is
not necessarily on the live coding itself but more on the results.

https://www.timohoogland.com

https://www.timohoogland.com

Chapter 3

84

Photo by Antonio Roberts

Expositions 85

Miri Kaat
UK

I am a UX (user experience) designer, researcher, and strategist with ten-plus years of professional
experience across music, games, and education, and my educational background is in game
design and web technologies. Just making impressive technology isn’t enough—it needs to have
an emotional impact. | work toward bringing digital interfaces to music creation, producing new
and accessible ways for artists to interact with technology. Working in the music industry has
enabled me to work as an artist, designer, and technologist. It's connected me to a huge network
of creative practitioners, industry practices, learning resources, tools, and technologies.

From working in this industry, | have also experienced the gender and racial imbalance. | wish
to address this more by teaching, inspiring, and enabling people from minority backgrounds and
introducing them to the joys of live coding. | have been involved with live coding as a performer,
music technologist, and educator. | have also immersed myself in the algorave music scene. Per-
haps most importantly, I've worked to help others do the same, hosting events and workshops
for women and nonbinary people, who often feel excluded from music technology.

My artistic practice is in audio-responsive multimedia. | use SuperCollider with TidalCycles for
live coding music and Max/MSP for generative audio and visuals. Being a musician, influencing
the creation of music technology solutions, and coming from a minority background give me the
insight to provide music technology training for underrepresented groups. | am lucky that my
interests lie at this intersection in music, technology, and accessibility. This, in turn, feeds my UX
design practice.

| am passionate about science, technology, engineering, and mathemathics education and
promoting music technology skills for people from minority groups. | have conducted workshops
and performances all over the UK and internationally. My aim is to create an impact using the
power of music, art, and technology as a force for social change. | am among some of the pio-
neering women in live coding within the UK. | believe live coding is especially good for teaching
creative coding skills. | released my debut EP with Establishment Records in 2017, a release that
saw media acclaim from outlets like Resident Advisor. This was composed and recorded using
SuperCollider and TidalCycles.

| believe the live coding scene is poised to reach a much greater level of diversity, collabora-
tion, and innovation in the future. | believe that artists and musicians can feel disenfranchised
with technology; this is a major issue that the music tech industry faces right now. Inspiring and
enabling people to work with new music software solutions is a step toward bridging that gap.
My long-term goal is to enable and mentor minority leaders in music technology.

https://mirikat.github.io/

https://mirikat.github.io/

86 Chapter 3

Livecoding jam with Abhinay Khoparzi, Akash Sharma, and Joshua Thomas.
Photo by Dhanya Pilo

Workshop on the Marching JS livecoding platform.

Photo by Abhinay Khoparzi

Expositions 87

Abhinay Khoparzi
Algorave India

Although there had been workshops and one-off events, a live coding “scene” didn’t develop
in India until Algorave India came to being in 2018. The first few events at Algorave India were
supported by the Open Codes project by the Goethe-Institut and Zentrum fiir Kunst und Medien
(ZKM) as part of their Open Codes exhibition. This happened after some friends and | (including
longtime practitioners such as Rebecca Fernandes and Akash Sharma, as well as visionaries such
as Dhanya Pilo) saw the renewed interest in the experimental/noise music scene brewing in the
bigger cities in India. We wanted to recreate a truer form of the experimental gigs we used to
organize a decade earlier, as well as showcase local talent that had been lurking in the shadows.

We soon moved to independent events funded by the community and ticket sales, starting
with a postworkshop event with a local creative-coding community at Walkin Studios, Benga-
luru. These independent events seemed like a better way to engage with and bring together
fragmented creative-coding communities in the city. Even though there had been a long-lasting
subculture of algorithmic practices in the country, it had always been hidden away in art galleries
that mostly highlighted European and US artists. Algorave India and live coding in general have
fared well in making the creative-code scene more approachable, reaching outside the realm of
“geeks” and art nerds.

The immediacy of results and the quick feedback in the process of live coding have been
especially useful in getting people out of initially feeling intimidated by programming and math-
ematics in general. Performances themselves become miniworkshops where one-on-one and
one-to-many interactions with audience members can develop into a learning space. Many con-
temporary artistic practitioners who were stuck in small towns, including people who didn't
believe they could show their beginner code and early experiments, came out to events and
shared their works on various forums and social channels.

Engaging with other communities, specifically in Canada and Latin America, has been espe-
cially fruitful in terms of collaboration and the exchange of cultural ideas, as well as crossover
events that feature artists with different skill levels joining network music ensembles.

https://khoparzi.com
https://algorave.in

https://khoparzi.com
https://algorave.in

Chapter 3

88

olpne :yHws ssoy ueiAy

olpne :yjws ssoy uely g |e

CA

) g A

:uosme] umeys ‘(2102) 6a6AT

B [ensiA

NSIA :UOSMET UMBYS (1 0g) LNy [95S8Y

Four time-lapse examples of live coded graphics.

Image credit: Shawn Lawson

Expositions 89

Shawn Lawson (Obi-Wan Codenobi)
Arizona State University, US

| often describe live coding as driving a race car while simultaneously attempting to change the
engine oil: plausible, dangerous, and exciting because the audience is there not only for the roar-
ing success but also for the spectacle and possible tragedy of the crash. Then | continue on by
saying they will be able to see the code I'm writing as it’s written in addition to the visual perfor-
mance. In a way, there’s a demystification of live performance magic, yet | think this makes the
experience more sublime because the viewer is along for the ride (a passenger) in this race car.

I've built a few live coding editors—namely, the Force (GLSL), the Dark Side (GLSL and Tidal-
Cycles), and LiveWare (GLSL and Lua). The Force autocompiles and, if successful, then executes
the GLSL while you’re typing. The Dark Side mixes the TidalCycles language into the Force so
that both can be written in the same text buffer by multiple users telematically. Lastly, LiveWare is
a Lua binding on top of LibCinder with additional functionality brought in from the Force. Each
has different degrees of Open Sound Control (OSC), MIDI, and WebSocket connectivity. All have
audio input.

| suppose my live coding practice is heavy on tool building and my own very individual-
ized software needs. With the Force, there were other GLSL live coding systems, but none were
designed or tuned for performance. For the Dark Side, my Rebel Scum collaboration with Ryan
Ross Smith encountered a physical dislocation. We needed a method of continuing the collabo-
ration telematically without compromising audiovisual quality. With Liveware, | was feeling the
need to explore graphics outside of the bounds of GLSL. I'll have a visual idea and then spend
time creating an environment that is capable of supporting the vision if it doesn’t already exist.
Even well before | started live coding, | was writing my own interactive art software. | find that
off-the-shelf software is typically too formulaic, constricting, or not quite capable. While this is an
extra burden (toolmaking), | think it's accepted as part of the practice.

Media-wise, there are a limited number of live coders for visuals. Online forums for visualists
and internet platforms (Vimeo) have been successful at allowing us to find and share progress
with each other. With collaborators, we rehearse material, try new material, talk quite a bit about
what kind of material we should assemble for the next work, and strategize which calls for pro-
posals to apply to. That all sounds more businesslike than it is in reality, which is significantly more
free-form and even chaotic.

http://www.shawnlawson.com

http://www.shawnlawson.com

20

e

e T P ¥ <*

‘q-:.:er:ur:- ey

=

. —— ‘*

Ei-nwsm-—"

e

Melody Loveless and Caitlin Cawley.
Photo by Melody Loveless

Chapter 3

Expositions 91

Melody Loveless
Codie, US

| initially started live coding after being encouraged to join LiveCodeNYC, a meetup group that
organizes meetings and algoraves in New York City, by Kate Sicchio and Sarah Groff Hennigh-
Palermo. Afterward, Kate and Sarah invited me to join their live coding audiovisual group, Codie.
Since then | live code in multiple projects, including a collaboration with percussionist Caitlin
Cawley and a solo project in which | record and manipulate samples of my voice.

Objectively, it makes sense that | would be drawn to live coding. | am trained in percussion
and music composition, | work with creative and interactive technologies, and I've enjoyed pat-
terns, minimalism, and conceptual art for a long time.

A major quality that drew me to live coding was how processes are highlighted. | often use
process as a way to structure events and as a metaphor for ideas that | am meditating on. For
example, in my sound installation Memory Room | juxtaposed and alternated between field
recordings of water and pink noise as a metaphor for how memories can be replaced over time
without people noticing. When | understood that live coding highlights processes, | immediately
became intrigued.

My initial experiences teaching live coding to kids and young adults with special needs and
social-emotional learning disabilities especially inspired me to think deeply about my role as an
artist and educator. As is the nature of most creative technologies, live coding has the potential
to empower people to participate in and create art—regardless of their artistic knowledge or
comprehension of the underlying systems being used. My aforementioned experiences specifi-
cally highlighted this idea and showed that reducing participation in music to the execution of
syntax has the potential to open performance opportunities to people who would not be able to
participate otherwise. For example, the loop-based nature of live coding technologies could allow
people who struggle with movement, like those with motor skill disorders, to “play in time.”

Pedagogically, live coding has been a great tool for discussing and demonstrating electronic
audio and visual principles. For example, when introducing Hydra’s operator functions, | also dis-
cuss pixels and additive color mixing while demonstrating mathematics in action. | also empha-
size the idea that current live coding technologies are a continuation and extension of previous
technologies and art movements by contextualizing these tools to their inspirations and related
technologies. Examples of this include how | introduce analog video synthesis before demo-ing
Hydra and how | connect live coding music to tape music, turntables, synthesizers, and process
music.

When performing, the role of time and synchronization varies greatly depending on the proj-
ect. In Codie, we often just start our technologies to begin a performance. Once performing,
Kate and | will refer to Sarah'’s visuals for cues. In contrast, Caitlin and | discuss frameworks for
improvisation ahead of time and sometimes coordinate specific moments. While each collabora-
tion has its own challenges, when performing alone, the added layer of singing makes this project
the most difficult to execute.

melodyloveless.com

92 Chapter 3

:why_1is_the_default_question

Live_loop :something_keeps_pushing. forward,
sync: :time do

Live_loop :why is_the_default_question,
sync: :thefneed_for_structure_appears do

live_loop
in_thread do
sit_by_the_river

end

sample BIRDS[1], rrand(
rrand(-1, 1)

sample FROGS, rrand(

s s
sleep sample_duration(FROGS)
d

Live_loop :the_moment_for_reflexion_is_over,
sync: :something_keeps_pushing. forward do

live_loop
do stop
with_fx y N do
f binaural_beat_generator(5
| | I [BASE, CH7],

end

anth +o VR1Gas/

Image credit: Mynah

Expositions 93

Mynah Marie, a.k.a. Earth to Abigail
TOPLAP Israel

When | started performing as a live coder, people would ask me, after my shows, “Why choose
live coding? Why not use a traditional DAW?” It's a fair question. | remember asking myself this
many times at the beginning.

When | discovered Sonic Pi—the live coding platform | use for most of my performances and
streams—I knew | had found something incredible. | didn’t know exactly why it was incredible; |
just instinctively knew it was. | felt the possibilities without having the knowledge to experience
them clearly. | became obsessed with finding answers to this initial “why.” It awoke a curiosity in
me | didn’t know | had and kept me up at night with a thirst for knowledge | never seemed able
to satiate.

This “why” helped me find my creative freedom. Earth to Abigail isn’t me—it’s the space I'm
creating in. I'm not alone onstage. When I'm live coding, my laptop is more than a tool. It's a
companion, a source of inspiration, an entity | can have a conversation with. I’'m the master of
my own creative universe, and through this conversation with my computer, | have access to con-
stant sources of inspiration, challenges, and surprises. Ultimately, it’s this conversation happening
through the code that keeps the creative process interesting and evolving. Because of that, you
could say it’s a love for communication that drives my passion for live coding—communication
with an artificial “being” that has capacities | don’t possess and communication with the audi-
ence through the music and the words on the screen.

Programming languages have an expressive value beyond their initial function of “building
things.” And computer languages are mostly rooted in the English language. Music is also a
language, with its own set of rules, vocabulary, and syntax. When I’'m live coding, most of the
time what I'm really doing is “painting with sounds” the story I’'m writing with words in the code
projected on the screen.

Now the initial question of “why” has been replaced by “why not?” Why not strip away all the
boundaries of why people write code in the first place? Why not use code to express emotions?
Why not unify the language of code, the language of music, and the English language into one
work of art? Why not make the artistic process itself the essence of a performance? This “why
not” gives me freedom as an artist and fuels my never-ending passion to keep learning, creating,
and sharing this creative space.

https://www.earthtoabigail.com

https://www.earthtoabigail.com

94 Chapter 3

Photo by Steve Welburn

Expositions 95

MicoRex
Mexico

Jorge: When in architecture school, | started live coding, influenced by diagrammatic thinking
and macro-micro relationships. You build up a system in a musical context, and whatever you
throw in affects the perception of the whole piece; also the system.

Tito: Live coding is an opportunity to get involved expressively and theoretically with the people
who attend the live show and with other live coders. | love live coding because it gives me the
thrill of present tense, feeling, language, and thought.

T: Before MicoRex | started promoting live coding as an academic practice in the Mexican elec-
tronic art circuit through the Centro Multimedia.

J: MicoRex ended up being very influential for lots of acts that came afterward since live coding
and bands were not existent before that time. It helped to free experimental coding from elec-
troacoustics and present it as a joyful, fun, and edgier practice.

J: When we started becoming international, we found acts that were trying to bring live cod-
ing into the club realm, the first generation of algoravers—like Alo Allik, Glitch-Lich, slub, Shelly
Knotts, Benoit and the Mandelbrots, Norah Lorway, Kraftwife, Frederik Olofsson, Renick Bell,
Luuma—Iike-minded acts, but everyone had very different styles and systems.

T: As Mexican live coders, we all shared a common minimal style since we came out of the same
school of practice. Eventually, each live coder found their own programming style, and MicoRex
would distinguish itself from the others in the performance sense: the inclusion of voice, DIY
controllers, and more or less closed traditional musical structures.

J: Our system is designed by thinking about the music we want to create. Music first, technol-
ogy after. It relates to other systems in goals but not in design. Elevator pitch: it’s a live coded,
networked, audiovisual act with voice and physical interfaces triggering OSC messages through
a GUI system.

T: We do synthesis, not sampling. And, though we come from a “from scratch” live code scene,
we also use ready-made algorithms. We don’t use a messaging network system like Republic or
MandelHub. We just send the raw data and trust our musical and supernatural monkey abilities.
More like when playing in a band because, oh!, MicoRex is a band.

J: It's mind-blowing to witness a kind of normalization in a nightclub setting. | experienced vio-
lent reactions to live coding for dancing in Mexico! Now, the global network of live coding parties
is becoming more established. There are more systems and tools, and so acts are becoming more
easily expressive.

T: Yet live coding has limits as an expressive tool. You can’t prepare all the musical aspects you
want to present. Live coding has not this aim at all. It’s an opportunity to play in a way in which
improvisation and knowledge are more appreciated than a perfect final presentation. It is a phe-
nomenon of our time and capabilities.

96

Chapter 3

CH1yg 90,43

e P GEpRagke
T s 088 e SES
© *

giu;,/‘ \\4 \4\‘,‘/“1 = 1« . af 54,;:, ,g;

b3 BN D = e
Kl ~ S T ke 2

. sl
}”f—\ g" \?/fb\—i ecknttC)
(Cadle1 50 PG, oo,
ool 6o, L/\“
ot c ki
ol g ract b wah/ ok Mm{

T

&

ey,
R

7

am e oren;
sy ramnewCiedman

\asAvay.plot;
> LIVE 1l ? (Mt
many definitions; mir
riting and editing computer co
while the music is playing. This could be
for a performan nt of an

ing direct feedba
ideas. This i hort demo in the

minimal using the p amming
Snippets = =
it scale dur note > language SuperCollider. Live c 5
jpotes 2 not limited any m enre and can also

rhytmms >
> be written with other languag
>
P
L -> Pbindef(africankit’, ‘type', 'midi', 'midiout’, M|
~steadybeat.(),
~drumroll.)

1,1) 1), 'recfunc’, Pfunc({ | event | "open Functio

|

Live coding and using charts for computer-aided composition.
Image credit: Fabrice Mogini

Expositions 97

Fabrice Mogini

There are many definitions of live coding; mine is: writing and editing computer code while the
music is playing. This could be for a performance in front of an audience or, in my case, for impro-
vising, composing, and getting direct feedback while testing new ideas.

Before | started using an audio programming language, my compositions required a lot of cal-
culations using charts, grids, a deck of cards, and so on. | could not believe my luck when around
1998 | gained access to SuperCollider 2.1 while studying for the Sonic Arts degree in London. My
dream of fast and precise calculations was finally becoming true! The main problem was that once
I had programmed something new—for instance, a new part in the middle of a composition—I had
to wait until it actually played to hear and assess the quality of the edit. Because the music was
generative, it was not easy to fast-forward, as can be done with a sequencer. Another problem
was that while the expanded computing capabilities allowed ever-more complex calculations,
there were now too many parameters to be serialized. The music was becoming too much of a
mental abstraction rather than based in real-time perception. This is when | embarked on a quest
to change and eventually write code in real time so | could hear what | was designing straight-
away. Rather than just switch algorithms or edit certain parameters, | was trying to write some
of the code in real time. Although | incorporated some of these techniques in live performances,
my main incentive for live coding was to expand compositional capabilities while preserving
real-time control and feedback. | also coded jazz improvising algorithms (“Memory” in Morpheus
CD-ROM) and realized that live coding is a necessity for truly live improvisation.

| started to use the expression live coding around 2002; | remember by then that Alex McLean
had already used some form of live coding in his performances with slub. In September 2003, |
advertised my live coding set with SuperCollider at the 291 Gallery, Hackney, London. While the
set was based on controlling, editing algorithms, and sending data in real time to Director/Lingo
for visuals, there was nevertheless a part for live coding. By then | had also created the London
SuperCollider course (2002-2004) at Rising Tide, London, which in 2003 included a lesson with
a handout titled “Live Coding.” This handout was later presented during a workshop at the IDM
(Intelligent Dance Music) Summer school, London, where | had been invited as guest lecturer. At
that time | often performed with composer/researcher/live coder Nick Collins; our performances,
notably, included a live coding duet at the Royal College Art Bar, London, in June 2003, with
real-time visuals by Fredrik Olofsson. Finally, many of our SuperCollider “tricks” and fixes were
solved when researcher and performer Julian Rohrhuber improved the SuperCollider language to
make live coding more accessible. Only then did | realize how many practitioners were showing
an interest in that art form.

| am amazed to see how live coding has evolved in the last twenty years. There are still so
many different avenues to explore, and | hope to see a future where coders won’t be over-
whelmed by the technological aspects but will also create beautiful music.

www.fabricemogini.com

http://www.fabricemogini.com

98 Chapter 3

Livecoded Splatter in Livecodelab.
Image credit: Kofi Oduro (lllestpreacha)

=ull’ \(f/'}f/_fii/:/ f/— Tl rﬁ?,i;‘:_f;?‘ F/,_— T
7) — NN (P
7 / |
2 2 == < = =
— 8 \ e ———

—) = 2 J = /_ 8
AR~ — —A = ol il7— = il W=
Al @48 = 4 lo—d

j ,
= = r: 7 = _’4,7*—7};/, < = e ,’.’f—/ . F/ir
|
; J - s
= 7 7 P m— 7 B =
7 (p— Izl [Z
J = y,
7 - ’ Z

| — = =14 B

= - /\ = =7 | = = Jﬁ &

Altered live coded piece.
Image credit: Kofi Oduro (lllestpreacha)

Expositions

Kofi Oduro (lllestpreacha)
Montreal, Canada

Live coding to me is giving a digital extension /
Of myself, where it has a new form

A form of digital representation / A form that
breathes through the environment

Where it can mimic a therapist / A scientist or
simply just another experiment

Of playful interaction / Or meaningful actions
that leads

To both addition and retraction / Retracting
the mind to a place

Where the mind breathes / Through the bits

Giving clues as the feedback / Gives what the
program believes

From the keystrokes that are being hit / The
mathematical equations

That are feeling split / Where the emergence
of creativity

And randomness meets up quick / As the
mind goes through its own stack

Merging the elements / From numeric to digital

Analog to pivotal / Seeing how the lines of
code/ When given the chance to roam

Flows through the ears / Through the eyes
they visit

Where the variables / Are given in doses that
are edible

As the goal is to be laid back in swarms / As
not to give the senses a storm

But rather allow for curiosity / To emerge like
rain does to a worm

https://portfolio.illestpreacha.com/links
https://colorscape.illestpreacha.com/
https://instagram.com/lllestpreacha

929

Live coding to me is just like this poem /
Pieces adding together

To paint a picture for worse or better /
Jamming with myself or others

As we are on a journey below and swim

Swimming with imagination

Improvisation with no intimidation

Where the culture allows for conversations

With no limitations

To the ideations & creations

That help the ideas be their own levitation

As they signal from the head

To the fingertips

And if vocalize, through the passage of the lips

As the vibration in the air

Mixes with the intent

Blends with the indents

That can be seen on here

When a spark is needed

It provides the flare

When a thought disappears

It reappears with a vision that is clear

As needed

Poetry is Code

Code is Poetry

Code occurs outside the computer screen

As it comes thru the journey, a human seen

And put together is the nature of this live
coding scene

For these are my thoughts, when asked to reflect

Of live coding, which | came to respect

https://portfolio.illestpreacha.com/links
https://colorscape.illestpreacha.com/
https://instagram.com/Illestpreacha

100 Chapter 3

(0.11*1...6), sin (0.08/1...6)] [sin (0.06/1...6), sin (©.84*1...6)] 0.802) * [sin 0.11,0.5 ~~ 1 $ sin 0.12, 1] *
[6,0.875] [2,0.25]) >> hsv
y [* (fb

s

Punctual live coding language.
Image credit: David Ogborn

Expositions 101

David Ogborn
McMaster University, Canada

To define something is to stake a claim to its future, to make a claim about what it should be or
become. This makes me hesitate to define live coding. Forced to choose from a number of “oper-
ating definitions,” the one that gives me the least anxiety is to think of live coding as the “theater
of code.” This is not only a theatrical space constructed from code but rather a theatrical space
that thematizes code (and computing and software), asks questions of these things, exposes the
skeletons in the closet, and maybe even allows for catharsis, reconciliation, and new visions of col-
lective possibilities. This can sometimes be iconoclastic, but it need not be. With repetition, even
simple interventions in the machine gradually become larger shifts. To constitute live coding as
theater is to resist constituting it instrumentally (i.e., as simply about producing things more effi-
ciently or in novel ways) and to insist on an irreducible role for representation and interpretation.

My path around live coding has been influenced most immediately by my role as the found-
ing member of the Cybernetic Orchestra, a laptop orchestra at McMaster University that has
been meeting and performing continuously since early 2010. That, as well as my teaching in the
Department of Communication Studies and Media Arts, puts me into almost daily contact with
situations in which different people are encountering and responding to live coding in different
ways. At the same time, live coding is a site where personal interests of longer standing intersect:
live electronics, improvisation, philosophy, education, free software, generative music, politics,
and maybe even science fiction. My live coding activities take different forms: performing by
myself or in a duo with either an autonomous agent | am cultivating (DaemOn) or with tabla
player Shawn Mativetsky (as very long cat); weekly Cybernetic Orchestra rehearsals; developing
and maintaining multiple software platforms; writing about these things. . . . Perhaps my most
obvious contributions will be as a popularizer, as | have introduced many thousands of university
students in large survey courses to live coding over the years. | hope to contribute to establishing
interpretation and critique as elements of live coding culture.

The software systems | have been developing in recent years are strongly oriented toward
collaborative, geographically distributed live coding. Estuary is a sprawling web-based platform
for live coding, developed with the support of two grants from Canada’s Social Sciences and
Humanities Research Council (which also strongly supported early research around the Cyber-
netic Orchestra and the second ICLC in 2016), and “hosting” a growing number of indepen-
dently developed live coding software projects (thanks to the magic of open-source licensing),
including my pet project, the audiovisual language Punctual. The idea of supporting and mixing up
multiple languages has been a fixation in my technological work (earlier, for example, | worked
on a “language-neutral” synchronization system for live coding ensembles). This is motivated by
the idea that monolinguistic cultures and ethnocentrisms are mutually reinforcing. Live coding,
performing a theater of linguistic plurality and complexity, may create a space for less anxious,
more welcoming futures.

http://www.dktr0.net

http://www.dktr0.net

Photo by Jojojo star

Photo by Jojojo star

Expositions 103

Jonathan Reus
University of Sussex, The Netherlands/UK

My first encounter with a live coding performance was at the Studio for Electro-Instrumental Music
around 2012 or so. | remember finding it intriguing but also kind of impenetrable. For me live
coding tends to be a way of working and thinking creatively rather than exclusively a performance
practice.

| started using SuperCollider years ago when Marije Baalman and | started a music/program-
ming meetup group in Amsterdam. Marije was at the time a major contributor to the SuperCol-
lider code base, and she made a pretty compelling case for using it. | found it to be an expressive
and immediate way to sculpt ideas in time, but I've never thought of myself as live coding. It's
more that the act of making anything using an interpreted programming language involves live
coding in some sense, be it an installation, a piece of music, or a light-control GUI for a theater
production. The creative process is more like sculpting than engineering. You build up a little bit
here. You remove a bit there. You work in small gestures, not entire programs.

I have performances that involve pulling apart computers while they are running different
software where all the sound material is generated from a combination of the metal, plastic,
and electricity of the computers. Live coding makes an appearance in these performances as a
dramaturgical and narrative element. | might run epistolary commands in the terminal or write
missives in a text editor, and these add to the storytelling of the performance. Other work, like
Anatomies of Intelligence (my collaboration with Joana Chicau), goes so far as to use live coding as
a kind of epistemic philosophy to engage with larger themes, such as the spectacle and theatrics
of scientific knowledge or bias in the data corpuses of Al systems. Anatomies of Intelligence uses
a bespoke system that exists within a web browser. In the latest version of this performance, we
created a “Virtual Theater,” a website that Joana and | remotely access and relay JavaScript com-
mands to. Everyone who is visiting the site gets our JavaScript commands relayed to them and
executed in their browser, directly manipulating the web page, including graphics and sound.
We compose a very specific narrative for each performance, with room to improvise, and perform
together using a shared text editor.

I’'m hoping that live coding stays idiosyncratic, and that the community continues to grow. And,
especially, that artists and toolmakers think outside of established audiovisual performance norms
and communities. Reach out to unusual audiences, remix, and collaborate. Recently, | organized
a Zoom aerobics workout class, the ALGO-RHYTHM DANCE WORKOUT, with a dance instructor
teaching a routine to live coded visuals and music. It was beautifully absurd and absurdly fun.

jonathanreus.com

507301 0. 9401129 0. 9444121 0.

“
- 2 =
KJJ ﬁ "0. 06090)ﬂ 0.3934380 0% “ ,4791732 & &lSZHZS 0. z
a 7sws 036594 0. 96 289497946013 0. 78098 aae 0.713! 8 0.7507938
4945 0.9534605 0.9

5166 0.9424416 0. 9522638 0.935
oo @~ ~ 11%80)

0.9617403 O. 936
& L 5100--'-00110411.&__
et Lqain| p
/ ersd <5> g8/
spReC s
o o
[- . .
n
sou
i
.
|| il

Chemical Algorave
Photo by Antonio Roberts

s!@
f

|
F 9.3934. 4380 0.441 6445 0. #7917ELIS

; N N
9.7899 9490 07772600 0.5 N | N\
i X e 17 -5
2 _m\ X
7 1ib/scale 56 B6 1 2 O
™ T
7, -

|
|

"; i
M-

Chemical Algorave
Photo by Antonio Roberts

Expositions 105

Antonio Roberts
UK

During my time with BiLE (Birmingham Laptop Ensemble) | had already started making live visu-
als for electronic music, although this was more a case of manipulating existing software and
code. Knowing people such as Shelly Knotts, who had already performed at algoraves, gave me
an entry point to start live coding in early 2014. At that time there were relatively few people live
coding visuals, and so | found myself in a unique position.

My live coded visuals start off with a simple geometric shape, usually a cube. | might then
start to manipulate that one cube by rotating or scaling it. Then | will multiply the amount of
cubes and have them spin in different ways, changing colors or changing size depending on
other factors such as the amplitude of the music. | try to code and present this in a way that is
clear enough for the audience to see how | arrived at the result on-screen, but inevitably, it ends
up looking messy!

Building your code slowly over time is not a bad thing. In the thirty minutes or so you typically
have for a set, you can build up your visuals slowly or scrap it all and start again. Don’t exhaust
your code and yourself by building up all of your code within the first five minutes.

Both VJing and live coding music have a strong visual element, and | feel they both seek to
demystify how computer art is made by showing the process. | have definitely seen a tighter inte-
gration of music and visuals as live coding practice has matured. For example, artists now have
visuals that react to the music in more ways than just amplitude. Some programmers are even
building visuals into what was initially only audio software.

http://www.hellocatfood.com/

http://www.hellocatfood.com/

piano = tracks[0]

piano.note.seq(
line(1/2, 4,
[E1Y/ZBR¥Y/ 81/,
)

piano.note.seq(
line(1/2+
[1/8,1/8,

)

piano.note.seq(
line(1/2+
[1/8,1/8,

)

v = sine(2, ’
piano.velocity.seq(v

piano.note.seq(
sine(] ;
Lookup(line(

)

piano.note.seq(
sine(g
Lookup(sine(

= Stripes()
.xCount = 150
.yCount = 15
= Kaleidoscope()
.sides = .5

= Focus() 4§

.waveFactor =

= Film()
.sCount =

= Focus()
.waveFactor

= Dots()
.scale =

Top image: Annotations in Gibberwocky show waveforms that are periodically sampled to generate
musical patterns. Bottom image: Multiple post-processing shaders stacked in Gibber to create an
abstract form.

Image credits: Charlie Roberts

Expositions 107

Charlie Roberts
Worcester Polytechnic Institute, US

Gibber is a browser-based environment for audiovisual live coding. It primarily uses JavaScript as
the end-user language while offering affordances for both music and graphics programming. A
dedicated server supports user publication of sketches, real-time chat, and a variety of other col-
laborative features. A trio of derivative live coding systems coauthored with Graham Wakefield—
collectively named Gibberwocky—borrow many aspects of Gibber’s interface to target external
applications, including Max/MSP/Jitter, Ableton Live, and generic MIDI communication.

When [initially began work on Gibber, | was already working extensively with browsers and
JavaScript, creating end-user frameworks for interface design. | wanted to explore the potential
of JavaScript as a live coding language and the potential of the browser as a vehicle for the col-
laboration and dissemination of creative work. By chance, at the time these interests were coming
together—in 2012—the Web Audio APl was released for browsers, enabling real-time synthesis in
the browser using JavaScript alone. Gibber was one of the earliest systems created for live coding
performance in the browser; now there are a variety of excellent options.

Running in the browser makes Gibber an easy match for introducing people to live coding; no
extra software is required. This has helped enable workshops all over the world that use Gibber to
teach the basics of live coding and computational media. A variety of summer camps, after-school
programs, and university courses have also used Gibber heavily.

One significant area of research | have been exploring with Gibber/Gibberwocky is the use
of dynamic annotations and visualizations in source code that documents the state of running
algorithms; many of these are shown in the top image on the left. Heavily inspired by Thor Mag-
nusson’s ixi lang, the feedback provided by annotations/visualizations is typically what | receive
the most positive comments about after performances; perhaps with more practice someday
audiences will respond similarly to the music | create.

Gibber seems to have found a niche as a live coding system for beginners. Its reliance on the
browser makes it easily accessible but also stops advanced programmers from using their pre-
ferred code editor for performance—and the editing interface is, of course, a critical component
of live coding. | hope to eventually attract more advanced programmers via Gibberwocky, which
provides unique integrations with artistic production software not found in other live coding
systems, and also by porting Gibber and Gibberwocky to run inside other editors. Gibber and
Gibberwocky have drawn inspiration from a number of other live coding systems, especially ixi
lang, Tidal, and Extempore.

The continued development of Gibber/Gibberwocky is highly dependent on my performance
practice. Typically, | have an idea I'd like to explore in a performance—perhaps musical, perhaps
an interaction technique—and this spurs subsequent development work. As an academic, the
research potential of new features is also an important consideration when deciding which ele-
ments to focus development on.

http://gibber.cc

http://gibber.cc

108 Chapter 3

qabrislaMistrsl tidsl

p "uno" $ jometime} $#sohenimess(#ialentsd)ss"gabw s#"gabchedat [#,6] | chouewél , "23)o#' 'vowel "<a
o>"

p "dos" $ every 4 (slow 1) $ slow 0.6 $ s "olvidar < olvidar:2 olvidar*2>" # note (choosel[0,-3,3])
p "dos" $ every 4 (slow 1) $ slow 0.6 $ s "olvidar < olvidar:2 recordar>" # note (choosef"
{i,‘hres" $ slow 5.12 $ s "gabriela" # n (irand 10) # gain 1.2

f=# Prelude> Sound. Tidal.Core
hush 2lax2" # n (irand 10) # gain 1.2 # begin (range 0 0.5 $ slow 4

NS hs WNPRP

fury

gabriletatal

=

0)

=

9
10
?
18
1
B
7

f
f
f
f,
f
f
f

]
@

=
©

TidalCycles

>

>

- =

&

© GitHub - Git (0)

Screenshot from live coding performance INVOCACIONES.
Image credit: Jessica A. Rodriguez

Expositions 109

Jessica A. Rodriguez
Mexico/Canada

Invocaciones (“Summonings”) is a series of performances that arise from the need to explore my
artistic practice through the voice of female poets, mixing live coding practices (or code on-the-
fly) with electronic literature (or expanded literature practices through digital environments) and
exploring the poetic possibilities of code and what speech it activates.

For the performance Invocaciones, | remixed the poem “Pais de la Ausencia” by Chilean writer
Gabriela Mistral, which explores images about identity, place, and territory. Through the author’s
voice, | made a reinterpretation of the poem, expanding her words through different sound layers
that move through a stereophonic space. | use TidalCycles to create speech patterns (transform-
ing voice samples) through cacophony, juxtaposition, delay, echo, and oversaturation to decon-
struct and reconstruct the poem over and over again throughout the performance.

Additionally, | use prerecorded cello samples by Mexican-Brazilian cellist Iracema de Andrade.
The visual part contains a video (running in the background) of the Paricutin volcano in the state
of Michoacan, Mexico.

https://andamio.in/production
https://vimeo.com/jessicaarianne

https://andamio.in/production
https://vimeo.com/jessicaarianne

110

.diff(src(o1))

.rotate(0.3,0.2)
.sErollx([-1,1,1,—2|.smooth(6.3).fast(B.BS))
.scrollY([-1,1].smooth{8.7).fast(8.1))

r

£
t(gradient(4) .posterize([1, 5, 15, 38] , 8.7))

Screenshot of live coding with TidalCycles and Hydra.
Image credit: Iris Saladino

hush

let del w t

(o}

p
$

"ig"
stack [

whenmod 8 5
sometimes

$
$
#
#
#
#
#
#

n (run 16
s "haw"
1pf (fast
1pg (rang
octave "<
end (slow
gain 1

Chapter 3

whenmod 16 °

$
$
$
$
$
#
#
#
#
i

whenmod 8

sometimes

sometimes

every 3 (
s "trovar
end 0.125
djf (slow
up (scale
octave "5
gain 0.8

Expositions 111

Iris Saladino
CLiC (Colectivo de Live Coders)/TOPLAP Argentina

| am a sound-oriented multimedia artist. | live in a world in which in order to make a living out of
art you must conform to the market, the “culture industry.”

Live coding is a practice born in academic environments but now exceeds them, flowing into
groups of people with different backgrounds who voluntarily study and share knowledge, mainly
in digital spaces. Invested with ideas from free software culture, live coding creates new flows of
information and power, challenging notions such as verticality, hierarchy, professor, pupil, author,
creator, artist, technologist, talent, idol, and art. Communities operate by decentralizing and
horizontalizing information, processes, events, and decisions with respect for others as the core
of all interactions. We aim for collaboration and we mistrust competition.

I am a member of CLiC, based in Buenos Aires, Argentina. It started as a small group and now
is a large one. Cyberfeminist oriented, this community is where | discuss the most interesting
topics, such as technology, ethics, politics, aesthetics, philosophy, and art theory among others,
which are all very important to me as a creative person. We do not always agree, but it is nice
to deal with differences when the environment guarantees tolerance and cordiality. We share
technical and scientific information, and we help each other to solve code or tech problems. My
consciousness of the context | live in increases thanks to this group, and with it my actions in the
world, my artwork included.

| live code my music using SuperCollider and TidalCycles and my visuals using Hydra. When
coding sound, | usually feel like creating floating, circular moving structures: sounds emerge and
disappear and change position, duration, and timbre; the whole combination creates conver-
gence and divergence on different levels. | become entranced creating those structures, making
them turn, imagining processes, and typing them, exploring audio samples and digital synths
to their limits. | play and there is a pure joy in which the rules are not for winning (success over
others or other’s approval) but for sustaining the development of the activity across time, just like
a child’s free imagination.

| often jam with live coders from around the world using flok, a collaborative peer-to-peer
online editor. Even when not sharing a physical space, sound keeps allowing us nonverbal com-
munication by interacting with coded processes. We hear, complement, and understand each
other, we answer the sound proposals of our colleagues, we learn from each other, and we have
a lot of fun. We can embrace error as imperfect beings, recognizing and enjoying our diversity.

The whole thing | describe composes a poetic, new model for art and social interaction in
digital environments. It fills me with hope for the future.

https://iriss.netlify.app/

https://iriss.netlify.app/

112 Chapter 3

Photo by Kamil Kurylonek, 2014

Expositions 113

Kate Sicchio
Virginia Commonwealth University, US/UK

My main live coding practice focuses on live coding performance scores for dancers perform-
ing choreography for the stage. Dancers improvise movement based upon instructions that are
projected into the performance space. | have explored this in many ways, including using pseudo
code to create rules for dancers, live coding haptic feedback in costumes, and using machine-
learning algorithms and an image database to create a visual score. This work is typically shown
in black-box theater spaces as a live, improvised performance.

| started live coding after exploring the concept of computer hacking as a way to repurpose
and to extend this repurposing beyond technology. If | could hack my kinect to work with a
laptop, could | hack a piece of choreography to change the intended outcome? Hacking choreog-
raphy became an umbrella term for many works | made in which a choreographic score would be
changed live in a performance setting.

| started this work before discovering the live coding community. Once | saw the TOPLAP
manifesto, | realized this reflected my choreographic work and underlying ideas. The use of the
projection to see the code and the changes, the live interpretations of the instructions, and
the performers thinking and making decisions as part of the performance were all things | also
wanted to highlight in the work. From here | went on to create two different programming lan-
guages for live coding choreography, Terpsicode and Studio//Stage.

I have collaborated with other live coders in different ways. Rodrigo Velasco has composed
sound for my work, and Nick Rothwell collaborated with me on creating a system for live coding
clojure to create animated text. | worked with Thomas Murphy on a live coding environment for
images to create a visual choreographic score. But a much more in-depth collaboration has been
my piece with Alex McLean, Sound Choreographer <> Body Code. This work creates a feedback
loop between McLean’s live coding of sound and a generative choreographic score | am per-
forming through using sound analysis and motion tracking. These technologies connect our two
forms of improvisation and affect our decisions within that performance.

Currently, | also live code music as one-third of a trio, named Codie, with Sarah Groff Hennigh-
Palermo and Melody Loveless. We wanted to become more involved in the algorave scene and
saw the formation of Codie as a way to participate. What is interesting about Codie is that our
audiences always dance to our sets. So, despite not explicitly coding instructions for movement,
we have managed to create performances where people are dancing to code, as found in my
choreographic works.

http://sicchio.com/

http://sicchio.com/

114 Chapter 3

Photo by Clément Merle

Expositions 115

th4
France

For me, live coding is not just creative coding, as it involves some kind of live component, which
could range from completely improvising a piece of artistic code onstage to tweaking an already
prewritten algorithm. | came to live coding in a fairly traditional way: | come from a computer
science background, and | wanted to make music. DAWs were a bit obscure to me, and | felt
that my prior knowledge of programming would give me some kind of head start to make up for
my relative inexperience in music. | almost exclusively work with TidalCycles, and | feel like that
scene is more oriented toward the rhythmic aspect of the practice, while mine is much more on
the harmonic side.

In the future | think we’re bound to see Al play some kind of role in music in general, particu-
larly as a tool to generate unexpected ideas, and it would greatly surprise me if this didn’t make
its way to live coding in some way or another, even though | don‘t imagine it completely taking
over and leaving no space for more “handmade” algorithmic creation.

From my experience performing in front of non-code-literate audiences, the visual aspect of
a live coding performance can exert some fascination on the general public from the esoteric
aspect of lines of code that you don’t understand giving birth to a piece of music or visual art.
This can also, on the other hand, be a good pedagogical starting point to break down the code
into something understandable.

https://th4music.net

https://th4music.net

116 Chapter 3

Photo by Cihad Caner, reworked by Felipe Ignacio Noriega

Expositions 117

Anne Veinberg and Felipe Ignacio Noriega
CodeKlavier and Off<>zz

Overture: Anne Veinberg (Aus, NL) is a pianist, and Felipe Ignacio Noriega (MX, NL) is a composer
and programmer. Since 2013 they have formed a music and research duo, Off<>zz, with the mis-
sion of bringing live coding into the classical music sphere. In 2017 their main focus shifted from
primarily performing as a duo to creating a fused practice in which one makes algorithms by playing
the piano. This project is called the CodeKlavier. The CodeKlavier employs the piano as an instru-
ment for live coding and is influenced by musical thought to drive programming language design.

Thema Adagio: The CodeKlavier spawns from treating musical gestures on the piano as the syn-
tactic sugar that can generate code constructs such as variables, snippets, conditionals, and function
definitions. The implementation of the CodeKlavier is strongly based on functional programming
concepts and music analysis. It comprises three main areas: (1) The parsing of piano playing into
programming expressions, otherwise known as the piano parser; (2) The creation of algorithmic
structures from the parsed building blocks; (3) The code outputs, which can be developed on any
live coding platform. The latter allows us to collaborate with different creative coders to “piano
code” on a wide variety of artistic planes. By 2020 these collaborations included code output exten-
sions developed by Patrick Borgeat, Timo Hoogland, Joana Chicau, and Sebastian Pappalardo.

Allegro variazioni: Although mostly associated as a duo and for their work on the CodeKlavier,
their individual projects are also intimately involved with live coding. Felipe has been exploring
live coding and humor through the hip-hop band Panda Zooicide, in which live coded beats and
a rapper explore the relationships of freestyle rap and the improvisatory elements of the live cod-
ing practice. Next to these projects, he also employs live coding extensively in all his output as
composer: mostly music-theater pieces for children with the Norwegian-Dutch theater collective
Krims-Krams and other collaborations within the classical music sphere. Anne is a professional pia-
nist. Her live coding practice is always connected with piano playing whether it be piano coding
with the CodeKlavier, collaborating with other live coders, or attempting to multitask and code
via laptop while playing the piano.

Coda: When thinking about live coding, we expect different things. Anne often looks for a ful-
filling musical or artistic experience, while Felipe seeks out humor and transparency in the code.
We both believe in the powerful connection that the audience members make with the perform-
ers when they are able to follow the development, thoughts, and decision-making of the artists
and how the performance environment influences all of these. Live coding is a medium that can
reflect and highlight this relationship, and that is one of the main reasons why we are seduced by
this practice. We also believe that musical intuition and a deeper understanding of music aesthet-
ics and theory can unlock new approaches to technological development.

https://codeklavier.space
https://keyboardsunite.com/offzz
https://pandazooicide.com

https://codeklavier.space
https://keyboardsunite.com/offzz
https://pandazooicide.com

118 Chapter 3

i

b)
“modulate(os, () =

e
contrast (1.3)
loutlol)

11 osctss,
9).color(3,

Photo by Ali Barilaro

Expositions 119

Rodrigo Velasco (yecto)
Mexico/Canada

First, | want to thank all of those who are part of the live coding community, which is an example
of openness and diversity. Live coding helped me escape. | consider it a back door or an escape
tunnel to reimagine and relearn how to feel and rethink language and programming. In 2011
an interest in escaping from graphic design, making music, and exploring or reimagining both
through the use of open-source software fortuitously led me to meet an incredible community in
Mexico City. It met in the open-source software workshops and the monthly live coding sessions
that took place in the Galeria Manuel Felguérez of the Centro Multimedia and were organized by
El Taller de Audio del Centro Multimedia. | remain grateful to everyone in the community, espe-
cially to those who patiently shared ideas and knowledge with me across and beyond live coding.

An essential aspect that live coding has gifted to my artistic practice is the idea of “algorithms
as thoughts.”'® | am interested in poetics and algorithmic poetics, a confluence of language; algo-
rithms as thoughts in movement; and the creation of a space-time that activates “a transversal
movement that bonds content and expression as assemblage.”"’

I am currently studying for a master of Design and Computation Arts at Concordia University
and developing a research-creation project, a living repository of Nahuatl memory, with the name
Algorithmic poetics, which consists of an ongoing process of reimagining Nahuatl poetry.'> Embrac-
ing Nahuatl principles expands our perspective in the study of algorithmic poetics, exploring
forms of coding that transform how we experience the web.

These interests also converge, although in a different way, in the project | have developed under
the alias yecto, which consists of composition and improvisation with sequences of percussive pat-
terns and chords; a state of calm that allows one to experience peace of mind. yecto is at the
crossroads of ambient, jazz, and hip-hop, but it is also live coding; the sounds are coming from
MIDI signals interacting between TidalCycles and/or the esoteric programming language ORCA,
with hardware synthesizers and often chopping samples or playing electric guitar. Regarding the
visual dimension, yecto is actively exploring the creation of generative design and live coded visu-
als, mainly through Processing, p5.js, and Fluxus, and a recent undertaking has been in the study
of Hydra and video feedback.

Finally, I want to thank the live coding community around the world, especially my dear
friends Ernesto Romero, Alex McLean, Karen del Valle, and Olivia Jack.

https://soundcloud.com/yecto

https://soundcloud.com/yecto

120 Chapter 3

P CL e A

0.1,

sk

v siﬁ(tm" .

¥y w1200 227

fjmred

«saturate(0.1)
«invert()

Photo by Antonio Roberts

Expositions 121

Elizabeth Wilson
Queen Mary University of London, UK

| see live coding as a method of notating and enacting creative ideas in a way that is fundamen-
tally human—through language. For me, this most commonly takes the form of creating music,
converting musical ideas from the graphemic to the acoustic. Alternatively, | like the definition
of live coding as “writing a ‘score’ for the computer to perform,”' as it shifts the perspective
from solely human control to more of a symbiosis. The live coding language | predominantly use
is TidalCycles. Being based in Haskell, which is a purely functional language, it is easy to build
around and augment code by constructing your own functions. Tidal is well designed in its abil-
ity to express complicated ideas with compact language, often closely resembling sentences.
Because Tidal is capable of a broad scope of expression, | want to extend the creative opportuni-
ties afforded to a live coder by building autonomous agents to perform with.

I am really drawn to the idea of being able to share creative responsibilities with the computer.
I've always wanted to avoid the constraints of gestural control that come with most musical inter-
faces. | found that automating processes previously requiring manual skills leaves more mental
capacity for traversing unexplored areas of creative spaces and uncovering new territories of
ideas. My own research involves incorporating affective response into musical generation, mainly
in TidalCycles. This is an important consideration for any future autonomous systems in live cod-
ing. Approaching the music generation task from a purely computational standpoint detaches it
from its essence of inherent emotional expression. This seems obvious for automatic text genera-
tion, which considers the narrative and its intended message rather than solely syntactic informa-
tion. It follows that the same should apply to music and that improvising with machines should
be an exchange of meaning.

I’'m also inspired a lot by the work of Renick Bell with the Conductive system. | like the way
that his “players” seem somewhat alive; that they can get bored of a pattern playing and take
over and change things. | often think about this idea of sharing creative responsibility, particularly
when performing live. Sometimes things might become overly repetitive halfway through con-
structing another pattern, so having a machine partner to enact some of the responsibility could
resolve these issues. | think we’re only just beginning to scratch the surface of how to utilize these
kinds of collaborations, especially if we can view destruction as a form of creativity too.

Many experiments in Al have been recreating the works of composers who have been dead
for a while, and not enough are creating new music to dance to, arguably one of music’s most
important functions. However, there’s a significant need for more stringent consideration of the
ethical implications of where and how we use Al in live coding, which, surprisingly, can still be
overlooked. Algorithms are often viewed through the lens of how they are used by large corpo-
rations. The word algorithmic in itself is not dangerous but can often be seen that way because
algorithms can be misused to enforce discrimination or prejudice. My hope is that algorithmic
music can help to change the public’s opinions on algorithms, allowing them to see how they can
be used for things as transformative as art and music.

https://lwlsn.github.io/digitalselves-web/

https://lwlsn.github.io/digitalselves-web/

122 Chapter 3

Photo by Helena Coll

Expositions 123

Anna Xambé
De Montfort University, UK

| see live coding as a meeting point between code and music in live performance. With some
classical training, and after several years of being in Barcelona-based bands as a bass guitar player,
singer, and composer, | started to make experimental electronic music in the mid-2000s. In the
exploration of new sounds and the boundaries of the musical language, it has been a natural turn
to approach experimental electronic music from a live coding perspective. Live coding brings a
DIY approach to building and sharing self-built tools/environments, along with projecting your
screen, as stated in the seminal TOPLAP manifesto, while providing an algorithmic approach to
performing in which each performance can be different even when based on the same code.
Furthermore, the community is unique and formidable.

My contribution to the practice is as a practitioner, academic, educator, and curator. As a
practitioner I've been moving from audio synthesis to sample-based music, where I try to explore
its narrative using my own as well as crowdsourced sounds. My academic research encompasses
inspecting different possibilities of collaborative music live coding (and its related political nego-
tiations) and multichannel experiences with live coding. As part of my teaching, live coding has
been useful for demonstration, as well as to promote teamwork and participatory activities in
class, including online during this COVID-19 pandemic. As a curator | have been co-organizing
live coding concerts in Barcelona (Spain) and Atlanta (US), contributing to the local and interna-
tional experimental electronic music scene.

My work has been inspired by the first generation of SuperCollider live coders and the Super-
Collider community, especially the Barcelona orbit of the Music Technology Group at Universi-
tat Pompeu Fabra, as well as the informal SuperCollider workshops and meetups organized by
Gerard Roma and I'ull cec. My practice has been strongly influenced by Gerard Roma’s work,
starting with a collaboration in the duo Pulso performing with a custom environment he wrote,
inspired by Thor Magnusson’s ixi lang, and using two code editors in sync.

The democratic and self-organized approach to collaborative live coding proposed by Alberto
de Campo, Julian Rohrhuber, and others with the Republic system is also of great inspiration. |
have explored group improvisation with Nela Brown’s Female Laptop Orchestra (FLO), along
with others, where my live coding was combined with a variety of other digital and acoustic
instruments. Knowing of Shelly Knotts et al.’s work with OFFAL was stimulating, as well.

I have been working with the Music Information Retrieval in Live Coding (MIRLC) system
since 2016, and my recent work is on a follow-up system named MIRLCAuto (MIRLCa), a
virtual agent for music information retrieval in live coding. The latter explores the theme of
Al and autonomous agents in live coding. Similar live coding systems include Nick Collins’s
“algoravethmic” remix system and its approach to live coding and machine listening, as well as
Navarro’s Cacharpo virtual coperformer. The web-based system Sema developed by Bernardo,
Kiefer, and Magnusson, which is an ecosystem of live coding languages and machine learning,
is also an enlightening project.

I envision the future of live coding as a community that will keep growing in diversity and
will keep advancing alongside other related fields. Feminist and decolonizing approaches to

124 Chapter 3

live coding can also open the floor to new, interesting voices and ideas. The combination of
code and music seems to either attract or scare the general public. | would say that the audi-
ence’s degree of computer and programming literacy often affects the understanding of a
performance.

annaxambo.me

4 Notation

Having mapped out some of the histories and contemporary examples of live coding’s
evolution as a performance practice, the emphasis in the following chapters shifts to
address how live coding opens up critical issues relating to liveness, temporality, and
knowledge production, as well as the notion of notation. This chapter focuses not only
on notation but on what is notated and the activity of notation—the nature of the
algorithms that live coders work with and the dynamic ways in which they are crafted.
By examining how live coding challenges tensions between liveness and determinism,
between musical improvisation and composition, and between oral and written cul-
ture, we find new approaches to notation as a dynamic, live medium.

As the field of live coding expands, embraced and developed by other disciplines
beyond the original traditions of computing and music, the understanding and appli-
cation of notation practices and principles have also changed and transformed, bring-
ing both the potential for the hybridization of the concept of notation as well as a risk
of confusion arising from the lack of shared conventions or vocabularies. However,
rather than argue for an agreed definition and application of notation within the field
of live coding, we explore if live coding can itself operate as an exploratory site of
interdisciplinary exchange wherein the concept of notation is roughened and prob-
lematized. The chapter begins by highlighting two research projects that have explored
notation within live coding in relation to other disciplines before looking more closely
at live coding notations and how they complicate the notion of notation itself.

Live Notation

Initiated in 2012, the research project Live Notation: Transforming Matters of Perfor-
mance (2012) was established in order to examine the shared vocabularies that may
unite two performance practices'—namely, live coding (performing with program-
ming languages) and live art (performing with actions). From the perspective of the

126 Chapter 4

live coders involved, this allowed them to examine their practice with fresh eyes, not
in terms of what was “new” in a technological sense but what was commonly shared
with another, well-developed performance art practice. Certainly, for many live coders,
liveness and risk are at the core of the practice. The challenge is not about perform-
ing prewritten code; rather, the performance emerges in and through the liveness of
the event itself: through a relationship with the audience, other performers, the room
acoustics, the previous and following acts, and the adrenaline of the live, which all
shape the performance and the experience of performing. Likewise, for many live art
practitioners, liveness refers to the durational, embodied, nonrepeatable moment of
performance. Organized as an “experimental laboratory,” the Live Notation project
attempted to “approach programming as performance art, performance art notation as
code, code as speech, bodies as interpreters,” involving “improvisational sound works
(where computer code and the artists’ bodies become instruments), site-specific time-
based art works (where notation becomes the ‘piece’ as opposed to its recording device)”
alongside a series of position papers.” An attempt was made to challenge or disrupt the
function of notation as that which either precedes performance (as a score or script
written in advance and executed live) or that follows in the form of a recording or
document of a performance (supporting its future reactivation or replaying) by testing
forms of practice where the notation is produced synchronously to performance itself.
Reflecting on the specific practices encountered within this project, the term kairotic
notation (drawing on the Greek term kairos, “opportune timing,” to be discussed in
chapter 6) was proposed by Emma Cocker as a way of articulating the distinctiveness of
live notation from simply the performance of notation live.?

Live notation, or rather kairotic notation, refers explicitly to practices (including live
coding) in which a form of notation is produced as a live event simultaneously (and
in fidelity) with the experience it attempts to articulate. Here, live notation is com-
posed in front of the audience through its performance, unlike conventional forms of
scripting for performance that are decomposed or that disappear as they are performed,
as poet and essayist John Hall asserts.* Live notation is the kairotic or kairic event of
creating an adequate form of articulation simultaneous to the experience or ontology
that it attempts to describe. The performance produces its own score, during itself. Live
coding is performed as a recursive loop, where “notation and execution are collapsed
into one thing,” breaking down the “false distinction between the writing and the tool
within which the writing is produced.””

The Live Notation project also drew attention to many aspects of performance that
are often ignored or remain invisible within conventional notational languages: those
embodied, experiential, intersubjective vitality forces and affects operating before,

Notation 127

between, and beneath the more readable (therefore arguably more writable, inscrib-
able) gestures of a practice. Likewise, through the research project Weaving Codes, Cod-
ing Weaves (2014-2016),° live coders Alex McLean and Dave Griffiths joined weaver
and mathematician Ellen Harlizius-Kliick to address the challenges and deficiencies of
conventional notational systems for describing complex embodied procedures through
exploring the relationship between ancient weaving and computer programming. This
project asked, among other questions: How might the complex interwoven procedures
of ancient weaving be addressed through coded algorithms, when the tendency in
digital rendering of weave is often one of attending to and defining a discrete (isolated)
operation or function? How can computational notation accommodate the possibility
of two or more weaving techniques within the same fabric? Can computational nota-
tion capture and communicate the sense of the tacit knowledge necessary for weaving,
the critical deliberation, and the tactile and embodied processes of trial and error in
weaver’s work with the resistances, tensions, and even unexpected surprises of both
the loom and thread? Moreover, how can notation articulate the sense (and value) of the
decisions made “on the loom” so central to ancient weaving?

Central to the Weaving Codes, Coding Weaves project was an attempt to dislodge
the privileged model of “working out” when an idea is applied to material (having been
conceived in advance), in favor of a model wherein various levels of operation and cog-
nition are activated live within the process itself. What emerged through this research
was a sense of the complex, combinatorial properties of ancient weaving, which renders
any single system of notation or simulation inadequate. The weaver works with mul-
tiple notational languages at the same time, live weaving them together as a singular
experience or even gestalt. Additionally, different systems of notation can illuminate
or privilege different facets of the weave process, in which the tendency is often one of
attending to the operational settings of the loom (the heddles, the lift plan) alongside
the notation of the product—the resulting weave structure—itself, rather than the tem-
poral, tactile, and even sensuous movements of either the weaver or the thread.

In one sense, the Weaving Codes, Coding Weaves project made tangible that which
conventional notational and simulation languages fail to account for but the weaver
knows all too well: the importance of timing, timeliness, tension, rhythm; the negotia-
tion of different and even competing forces within the process of weaving; the tactility
of a weave’s three-dimensionality; and the textural properties of thickness, roughness,
density, and stretch. Both ancient weaving and live coding involve a live and embodied
process of decision-making that operates in excess of, or perhaps even between, the
lines of conventional notational systems. Within each practice, there is a sense of oscil-
lation or even “shuttling” between discontinuous systems of abstract notation and the

128 Chapter 4

continuous experience of a lived process and between the importing of source codes
and preexisting patterns and a mode of invention that actively modifies the process
as it unfolds. The tensions between the abstract and discontinuous logic of notational
systems and the ways in which they become reembodied through practice gets picked
up in chapter 5 with explicit reference to the notion of liveness—when the experiential
liveness of the performer meets with the technological liveness of the machine.

The Notion of Notation

These two research projects identify commonalities and resonances between live cod-
ing and other practices (specifically, live art and weaving). They consider what happens
when musical and computational conventions and understandings of notation meet
with notational practices developed within other disciplines, including dance, perfor-
mance and the visual arts, and textile arts, such as weaving and braiding. In so doing
they draw attention to how the term notation resonates with different meanings and
values within different disciplinary traditions, inviting reflection on what the implica-
tion of this is for the future of live coding practices. Within the frame of interdisciplin-
ary research and collaboration, is there any real consensus on what is referred to by the
term notation? Accordingly, this chapter sets out to move from a general notion of nota-
tion to address the specific questions that live coding raises as a notational practice.
Notation can operate in different ways within various disciplines, ranging from col-
loquial use for various note-making practices, to other forms of score, script, recipe, or
diagrammatic map, to the development of a formalized notation system with its own
clearly defined inner logic. Notation involves the production of marks or symbols, the
generation of signs relating to a signless experience. It operates within a semiotic field:
What or how is the relation between sign and signification? In one sense, notation
is activated whenever a sign or mark is used to stand for—represent. Addressing the
problem of notation for interactive media—or the “dangerous quest for a media art
notation system”—researchers Simone Boria et al. put notation forward as “an abstrac-
tion, a simplification, and intuitive or studied way of writing something down that
succinctly summarises the important points of a given situation, process, object or

system.”’

They further argue that “a system becomes a notation system when it has
a working inner logic using a set of abstract presentations (vocabulary) of aspects of
potentially universal experience deemed relevant to be differentiated between, pre-
served and communicated about.”®

Boria et al. elaborate the criteria for “notation-system-ability” thus: “Is there an inner

logic? . . . Isthere a vocabulary? . . . Are the notations potentially accessible to at least one

Notation 129

entity/person? . . . Are other aspects intentionally left out.”® Additionally, they conceive
a general catalog of notation systems that incorporates the following categories: gestural
notation—cheironomy or the use of hand signals; scientific notation—the abstractions
of mathematicians, physicists, and so on; musical notation—with its associated ideas of
score, composition, and interpretation; dance notation—with its genealogy from the
pictograph methodology to the real-time one-to-one “notation” of video recording;
painting notation—or perhaps, more broadly, a conceptual art tradition involving the
principles of instruction and execution while willfully minimizing expressivity; spatial
(as in nontextual) notation—maps, data visualizations; computer notation—involving
writing code and its execution.' Boria et al. identify a spectrum of purposes for notation
rather than any singular function—namely, to understand, to navigate, to share and
archive, to engineer, to analyze, to interpret, or to disguise. Within the expanded frame
of live coding, how can these different systems, traditions, and purposes of notation be
investigated in and through practice?

Notation History and Change

To address the specific questions that live coding raises for the practice of notation, we
begin with a brief account of the evolution of music notation, which has its origins in
early writing systems. Some of the oldest historical articles of musical notation are Hit-
tite tablets, from Ugarit in today’s Syria, written in cuneiform some thirty-four hundred
years ago. The ancient Greeks had notational systems, too, but most ancient musical
writings were written in the form of theory. This makes sense in the age of scarce
media, as a theory of music is generative and can produce practically infinite versions
of music. Western classical music developed very different ideas of authorship and
performance, largely deriving from Romantic ideas about the roles of composers, the
musical work, and its interpreters. Medieval monks developed systems for describing
intervals, called neumes, written above the sung text, but this was more of a memory
aid than prescriptive notation. With Guido d’Arezzo, an Italian monk of the eleventh
century, we begin to see revolutionary ideas of musical notation. Guido invented the
staff notation still in widespread use today, claiming that finally music could be per-
formed by people who had never heard it before."' The development of notation in the
following centuries represents a rich and exciting history, but from a media theoretical
perspective, a drastic change appeared with printing.

Following the Gutenberg press in the fifteenth century and stimulated with the
musical culture of the baroque, the primary purpose of staff notation in the West was
the documentation, composition, and distribution of music. Early printed works had

130 Chapter 4

plenty of scope for interpretation, improvisation, and extemporization, but written
notation became increasingly complex in the twentieth century, partly following
developments in print technology. Many of the things twentieth-century composers
wrote would not be possible to convey in earlier movable type musical notation and
engraving technologies. With new forms of print and graphic reproduction technolo-
gies, new modes of notation, such as graphic notation, became easier to work with.

While staff notation has had international influence on the world of music, it is
rarely seen in live coding music communities. One reason for this is that a primary
motivation for live coding is to engage with music through computational processes,
and while staff notation is representable as a symbolic, discrete data structure, it is
hardly a computational one. With some exceptions, such as ossia, there is no scope
for logic or branching in staff notation, meaning that it is not possible to express any
possible algorithm (i.e., not Turing-equivalent, in mathematical terms). It is certainly pos-
sible to “live code” an instrumentalist, as we find in Magnusson’s Code Music Notation,
created for a collaboration with marimbist Greta Eacott, who took the role of the inter-
preter in a performance at the International Conference on Live Coding in 2015."* In
this performance Magnusson wrote notation for the performer in a human-readable
algorithmic language based on machine language. Musical scores can, of course, be
changed in the middle of a performance,"® but any computation in the process would
happen elsewhere, perhaps to generate that score."* Many projects are algorithmic and
live in nature, but the typical approach of live coding notation is to adopt the language
of the computer itself: the programming language.

Another reason for the lack of staff notation in live coding is cultural. In the West,
live coders most commonly draw from urban club and dance music usually originating
from the African diaspora, such as New Orleans jazz, Detroit techno, Chicago house,
hip-hop from the Bronx, reggae from Jamaica, and jungle from England, as well as elec-
troacoustic, “experimental,” and noise musics from alternative and academic computer
music practices. All these influences could be considered to be oral cultures, where
musical techniques are mainly shared not as formal notations but through demon-
strations and word-of-mouth. Indeed, while live coding practice is heavily centered
on writing code, it can nonetheless be argued that live coded notation, with all of its
ephemerality and impermanence, has features that are closer to speech than to writing.
Live coding practice therefore finds itself caught between two worlds: it is too ephem-
eral to be score-based culture and yet too centered on text to be oral culture.

We return to the question of speech versus notation later in this chapter. In any
case it is undeniable that live coding is a supremely notational practice, in which (with
some exceptions, such as in live coded choreography) every event arises from notation

Notation 131

with explicit, formal meaning. Indeed, live coding notation is even more explicit than
staff notation, whereby some interpretation is generally left to the instrumental per-
former; by contrast, code is by nature deterministic. What breaks this determinism in
live coding is that the code itself is open to change at any point, bringing the compu-
tational processes of the machine and the thinking processes of the coder together in
a single cognitive loop.

Returning to our historical timeline, the nineteenth century brought the invention
and development of the pianola or player piano, for which music could be bought on
paper rolls, with notes played via holes punched in the paper, driven by pneumatics.
From today’s perspective, it is interesting to note that player pianos (as opposed to repro-
ducing pianos) were not fully automatic but were commonly designed with expressive
controls for tempo and dynamics for a human operator to “play.”"® Indeed, there were
once virtuoso concert pianola players, most famously Rex Lawson, who played music
composed for the pianola, as well as Igor Stravinsky and Conlon Nancarrow.'® Some
rolls were not only punched with holes controlling the notes but were also printed
with lines directing the human player pianist how to work the hand controls in order
to fully reproduce the performance of a particular human pianist or even the original
composer. Although the naming of a performer may have been more of a marketing
device than an accurate recording, the printed lines are a clear acknowledgment that as
a notation, the punched holes as notes within a grid of such metronomic rolls are an
incomplete representation of music."”

Where it is deterministically interpreted, live coding notation, on the other hand,
is a complete representation of the media currently being produced by it and therefore
sits in its own category: too transient and in the moment to be considered a record-
ing and too complete to be considered a mnemonic notation. But perhaps rather than
standing for a brand-new way of thinking about music, live coding instead exposes
flaws in how we have, in recent history, come to think about music as an end product,
rather than as a live activity.

Live coders perform with code, but it does not follow that the performance is itself
coded. That is, live coders embody their code and think through it but are not con-
trolled by it. From the outside, live coding culture could be mistaken for being dehu-
manizing and lacking expression, but this is a misunderstanding. Live coding is about
disrupting the deterministic logic between notation and process, bringing it into a cre-
ative feedback loop where that logic evokes an unconstrained experience, feeding back
into edits that are not predetermined.

This is analogous to the Machinery, a traditional clog dance originally from the
working-class cotton mills of Lancashire, UK, which mimicked both the sounds and

132 Chapter 4

movements of machines.'”® The Machinery takes the repetitive processes of industrial
technology and acts them out in repetitive, jerky movements, creating noisy clattering
and scrapes with the clogs, reproducing the sounds and movements of power looms
and other machinery. By embodying the machine in this dance, the dancer does not
become a machine; rather, machinic movements become human, and the millworkers
regain human agency from mechanization. Looking at live coding in this light, we can
see that live coders similarly do not become coded but rather embody code.

The Machinery began with women mimicking the movements of machines with
their clogged feet while they worked. Eventually, it was brought out of the mill and
into the world of mainstream culture and performed without the real machine pres-
ent. Could the same thing happen with live coding? In the algorithmic dance world,
it already has, with choreographers such as Kate Sicchio notating instructions not for
computers but for human dancers (see her exposition in chapter 3). Without the com-
puter, the difference between performing logical operations and “playing” logic then
becomes much clearer. Dancers interpret instructions on their own terms, exercising
agency in ways that are not predetermined.

Experimental Art Traditions of Notation

John Cage’s book Notations (1968) is a well-known reference for the art of notation in
the postwar experimental tradition. Indeed, there is a rich history across the twentieth
century to draw upon, echoing experimental practices in language such as OuLiPo,
mentioned in chapter 1, the instruction pieces of Fluxus, and avant-garde performance
practices more broadly. The connections between notations, programs, and scripts
underpin our concerns with how the structures that generate movement are made
visible—both readable and writable—and how aesthetic and functional perspectives
conjoin in graphic scores and executable forms. Often foregrounded in this history is
the way in which scores can be used to generate indeterminacy, as a way to navigate a
space of possibilities—for instance, the commonly cited chance operations of Cage and
the dice games popular among Western eighteenth-century composers. '

Another common reference is Luigi Russolo’s manifesto The Art of Noise (1913),% in
which all sounds can be considered musical and therefore demand new forms of nota-
tion. The Fascist politics to which the Italian Futurist movement related, and of which
Russolo was part, should, however, give us pause for thought in their call to discard his-
tory. The influence of the visual arts is also felt in the example of Wassily Kandinsky and
Paul Klee, in particular, in relating structures and colors in their paintings with rhythm
and timbre. Again, Cage—not least in his approach to noise—makes a good example in

Notation 133

his cross-media collaborations with dancer Merce Cunningham in chance operations. To
Cage, music comes together with other phenomena in expressing the absence of logic,
coherence, and predictability in everyday life. An example from the live coding field that
explicitly draws upon this tradition is Nick Collins’s Avscore 37.%' It is a graphic score with
two channels: player A interprets a succession of framed abstract scenes, and player V
follows a continuous staved timeline. Together the score acts as a suggestion for how the
audio and visual elements might correlate or not. The score itself is computer generated
and so folds back onto itself in expressing the creative possibilities of its live performance.

The foregrounding of notation in the form of a code or rules extends the legacy of
Fluxus scores and conceptual art instructions and the prevalence of algorithmic proce-
dures within computer art, where code or rules become generative strategies for produc-
ing outcomes potentially autonomous of artistic control or agency. Recall the Fluxus
performance score of La Monte Young's Composition 1961 No. 1, January 1 as operating
in analogous terms: “Draw a straight line and follow it.” Here, as Sol LeWitt remarks,
“To work with a plan that is pre-set is one way of avoiding subjectivity,” where “all the
planning and decisions are made beforehand, and the execution is a perfunctory affair.
The idea becomes a machine that makes art.”?* Live coders bring this subjectivity back
into view, although given that La Monte Young's composition is so open to interpreta-
tion, perhaps it was there all along.*

Representation and Style

Antony Braxton broadly divides the world of music practices into three categories:**
stylism, which no longer changes; traditionalism, which continues a long history of
change; and restructuralism, which signals a new kind of music as a break from tradi-
tion. It seems that notation has a role in deciding whether a restructuring of music
develops into either a tradition or a style. The power of written and printed music (and
to an even greater extent, recorded music) is in its capacity for mass production and
dissemination, but in supporting the notion of authenticity, or Werktreue, individual
pieces are less open to structural change. Oral tradition, on the other hand, particu-
larly in folk music, necessarily undergoes change through the act of transmission. But
from the perspective of music theory, we could also say that notated music emphasizes
change because every piece has its own identity, at times even its own music theory.
When human expression is represented on a computer, whether music, video ani-
mation, or choreography, it is reduced to numerical data that are being executed in
time. This is most easily seen in grid-based music,” in which pitches and durations are
given discrete numerical values, typically using the MIDI standard whereby integers on

134 Chapter 4

a linear numerical scale are mapped to the exponential frequencies of musical pitches.
Notes can be stored as numbers in lists and chords as sublists. In computer music,
timbre is often more important than pitch and can also be represented as numerical
values—for example, as synthesis parameters. Relatedly, we can find code libraries for
spectral manipulation and machine listening that can organize and manipulate sounds
along perceptually salient dimensions, of use for live coding systems. Choreographic
representations are perhaps less able to be reduced to grids of numbers, but here com-
puter vision and machine learning may also be applied, such as Sicchio’s work in orga-
nizing visual material into quality dimensions, creating a space of possibilities that can
then be navigated with live coded instructions.*®

Through notation, then, the live coding performer can engage with any parameter
that they judge to be of interest, whether controlling movement, pitch, timbre, or a
higher-order rhythmic manipulation. A specific live coding system will afford the control
of some or all of these elements, but it is clear from the plethora of available systems that
the authors of the systems are not necessarily interested in all. Algorithms are used to
describe patterns and shape events in time. The interesting question for artists is how
this is done because this will inevitably color the output. Live coding systems therefore
incorporate methods for their users to generate events over time while continually
shaping the result through live engagement with the running program. In the early
days of live coding, practitioners would often design their own systems, and the char-
acter of the inventor would shine through in the way the system worked. Live coding
environments typically supported what the author of the environment wanted to do
in a performance. Even today, systems such as Scheme Bricks, Extempore, TidalCycles,
Hydra, ChucK, Threnoscope, Foxdot, Sonic Pi, Improviz, and Gibber all exemplify
certain views on what is important in live performance, whether that is expressive
range, speed of writing, compositional potential, understandability, surprise, timbre,
spatiality, rhythmic patterns, visual or melodic progression, and so on.”’

A live coding language is an environment in which live coders express themselves,
and it is never neutral. People who speak more than one natural language are famil-
iar with how language shapes thoughts and personality. A switch to another language
might even affect how we move our bodies when we speak. Such effects are especially
pronounced in live coding, as the languages are typically high level, potentially designed
with particular visual or musical styles in mind and offer particular creative constraints.
We can therefore argue that live coding languages inevitably shape the thoughts and
actions of the user, but here the user is also a coder. Live coding systems range from being
more akin to individual pieces, such as Sicchio’s Terpsicode or Magnusson'’s Threno-
scope, to more general-purpose, systems-level programming languages. Where live

Notation 135

coders choose a more general-purpose language to work in, such as Extempore, Super-
Collider, Python, Lua, or even the venerable C language,”® they may choose to simplify
the expressive range of the language in order to create their own constraints, providing
a more manageable space of possibilities to creatively work within and against.” Alter-
natively, they may extend the environment with additional vocabulary or techniques
as a way to forge their own style. This has been called pre-gramming,* as it involves a
preliminary preparation for the live coding practice, a process where language design
inevitably merges with musical composition.

Defining Live Coding through Notation

The ideas represented by live coding, live programming, interactive programming, or
conversational programming are not new. Indeed, the design of common live coding
systems, such as SuperCollider, refers to the cybernetic ideas of Gordon Pask; the live
electronics of David Tudor; the programming language design of Alan Kay (Smalltalk),
David Ungar, and Randall Smith (Self); and Steve Tanimoto’s ideas about levels of live-
ness.*' The idea of creating an object or function that can be named and altered while
running is appealing for all time-based art forms, whatever the domain (choreography,
virtual worlds, robotics, animated graphics, music). What is abstracted and represented
is often the work of the language designer, which highlights the compositional deci-
sions involved. For this reason, we have not seen a coordinated effort to build a general
live coding language, but many individuals are making their own systems, albeit often
released to the public and used by others in studio work and performance.

The notational considerations in live coding systems serve multiple purposes.
Designers of the systems have in mind things such as ease of learning, ease of under-
standing for lay spectators, expressivity, error tolerance, speed of writing/tersity, trac-
ing, manipulation of code history, and many other language-design features that have
hitherto not always been considered relevant in traditional programming-language
design. This is changing, however, with the (re)emergence of the communities around
programming-language experience design and the “future of coding.” This resurgence
of interest in liveness among software engineers may have been partly inspired by the
live coding movement, although interaction designer Bret Victor is much more widely
cited as an influence through his well-distributed videos including “Stop Drawing Dead
Fish,” and the “Future of Programming.”** Following work with pioneering computer
scientist Alan Kay,*® Victor has since established the independent DynamicLand labora-
tory, modeled on Douglas Engelbart’s earlier Augmented Intelligence Lab, to take ideas
around live, tangible, computational environments further.

136 Chapter 4

Algorithmic Pattern

Live coding is an algorithmic art form in that code is written to represent algorithms
while those algorithms are being enacted by a computer to generate musical, visual,
kinetic, or other live results over time. However, we too often use the word algorithm
without fully articulating what algorithms are in terms of how they are structured
and how they operate. In computer science, an algorithm is often defined as a finite
sequence of unambiguous instructions that can be followed in order to solve a prob-
lem. This is clear enough but leaves much to say about how those rules are structured
and followed.

Magnusson and McLean have elsewhere asked, “How can we directly express musi-
cal patterns with computer code?,”* examining which strategies the performer can
apply in live coding for the patterning of music and which strategies there are at hand
for transforming the musical materials. We can algorithmically generate musical data
or write them by hand, but live coding does more than that: we apply algorithms to
alter these data. The aforementioned text drew upon a 1981 article by composer Laurie
Spiegel to frame examples of the pattern methods that can be applied onto musical
data or directly used to represent music.*® Spiegel gives an explicitly nonexhaustive list
of twelve categories of pattern manipulation from her perspective as a composer with a
foundational role in the development of computer music: 1) transposition, 2) reversal,
3) rotation, 4) phase offset, 5) rescaling, 6) interpolation, 7) extrapolation, 8) fragmen-
tation, 9) substitution, 10) combination, 11) sequencing, and 12) repetition.*

From this approach, the basis for pattern in computation (and vice versa) becomes
clear, particularly when we consider the lower-level operations of computer machinery.
For example, the logical operators “AND,” “OR,” and “XOR” are instances of combina-
tion (combining two values into one), “NOT” is a form of substitution (zero for one and
one for zero), and “<<” (left shift) and “>>" (right shift) are forms of rotation. As such,
live coder and weaver Dave Griffiths has visualized the state of registers over time while
simple calculations are performed by a CPU (figure 4.1) in order to demonstrate the
provenance of contemporary computation in ancient textile techniques, particularly
weaving and braiding.”’

From this perspective, computational algorithms and patterns culturally situated
in textiles, music, and dance seem closely related. However, this comparison does not
sit well in parts of the music field where composers in general use the word pattern
to describe any fixed sequence, sometimes even in a pejorative sense. Although the
centuries-old fugue, as a contrapuntal compositional technique, is based on pattern
thinking, some composers would be deeply offended by the accusation that they are

Notation 137

Figure 4.1

Visualization of the eight-bit registers of a Z80 microchip as it performs simple calculations, dem-
onstrating the relationship between computation and weaving.

Source: Computer artwork by David Griffiths.

making mere patterns.*® Minimalism—notably, the work of Steve Reich in applying a
phase operation to a bell pattern in his 1972 piece Clapping Music—demonstrates the
generative nature of pattern in Western concert halls as additional context for Spiegel’s
1981 paper.*’ But the connection between algorithmic patterns and the far longer his-
tory of handcraft, particularly textiles, is clear, and we return to the topic of weaving
and coding at the end of this chapter.

Since Spiegel’s paper, many computer music systems have explicitly included pat-
tern transformation features, from the early Hierarchical Music Specification Language
(HMSL), to the Common Music and Bol Processor systems in the 1980s, to SuperCol-
lider in the 1990s and many of the systems developed and used by live coders. The Tid-
alCycles system has perhaps gone furthest in this direction, being designed exclusively
for live coding algorithmic patterns. It consists of a mininotation for rhythms, heavily
inspired by the Bol Processor’s polymetric expressions,” and an extensive library of
combinators offering a wide range of possibilities for manipulating pattern. The live
coder is free to combine any number of these functions together, providing a very rich
range of possibilities for patterning different aspects of sound at multiple scales. We

138 Chapter 4

return to patterns and TidalCycles in chapter 6, where we compare and contrast differ-
ent approaches to time.

The capacity for algorithmic pattern to connect disciplines, including with the
ancient history of heritage craft practices, allows the practice of live coding to be
grounded and enriched. It also allows practitioners to connect their work with their
everyday life experiences. In a review of live coding and algorave culture from a femi-
nist technological perspective, Joanne Armitage quotes an interviewee speaking about
code as “a way of working through their daily life, adding structures to it and provid-
ing functions for being. These lived patterns merge with their daydreams and expres-
sions of color and geometry to form her live coded visuals.”*' In looking beyond the
conventional grounding of computing practice in military, industrial, and commercial
contexts to the far older and therefore more advanced ethnomathematical roots in pat-
tern, it becomes much easier to see how live coding can develop as a cultural practice.

Machine Collaboration through Notation

Predictive coding is a term used in neuroscience for the way the brain filters out redun-
dant noise (according to context) so that cognition can focus on the perceptual data
that are relevant to the task at hand. However, with advances in the field of machine
learning, we are getting to the point where a live coder is able to program in collabora-
tion or conversation with a live coding system that has learned about their habits and
style. Tanimoto has described levels of liveness in programming languages, where the
sixth level represents a state where “rather than simply making tactical predictions, a
system might be capable of successfully making strategic predictions.”*

A number of projects have indeed explored what could be called artificial live coding,
either as autonomous systems or assistants that suggest edits to human live coders. Inter-
estingly, even relatively straightforward approaches to code generation turn out to be
remarkably successful. Ixi lang’s autocoder, perhaps the first practical example of artificial
live coding that effectively manipulates code based on straightforward rewrite rules, is
often used by performers who are the worse for wear or otherwise in search of inspiration.

Research into artificial live coding was prefigured by McLean’s work on generating
continuations based on Kurt Schwitters’s sound poem Ursonate (1932),* for which he
created a domain-specific language to represent rhythm that later formed the basis
of the TidalCycles live coding environment.* Perhaps because TidalCycles has been
designed to be easily readable by both humans and machines, it has since been used as
the target representation for a number of artificial live coding systems. Shawn Lawson
and Jeremy Stewart’s Cibo agents have been developed over several iterations, version

Notation 139

two being trained on code recordings of prior TidalCycles performances, producing
a three-dimensional latent space traversed by a recurrent neural network in order to
generate a new performance.* Simon Hickinbotham and Susan Stepney applied evolu-
tionary algorithms in a system for multiple autonomous agents to live code TidalCycles
music together using the Extramuros network music system.*

The systems mentioned so far mainly operate only on the notational level, but the
MIMIC project brings machine-learning and machine-listening techniques together in
a system that encourages end users to create their own live coding languages. A strand
of that project, called Sema, developed by Francisco Bernardo, Chris Kiefer, and Thor
Magnusson,” invites people to create their own live coding languages specifically for
machine learning in live coding practice. The MIMIC project workshops have invoked
some of the early atmosphere of the live coding community where everyone worked
with their own experimental notation and mixing live coding and artificial intelligence
aspects also connects with Engelbart’s early conception of augmented intelligence. We
speculate further on the future of artificial live coding in chapter 8.

Live Notation in Performance

The function of notation in live coding can be seen as threefold: it is the syntactic
structure read by the language interpreter that executes the program, it is the action or
movement of the performer that is projected to the live audience, and it is the artistic
(e.g., choreographic, musical, visual) output of the process that is notated and manipu-
lated by the live coder. All of these require further unpacking, but let’s start with the
last point. In musical terms, the live coder is concurrently playing and composing.
The computer (or any system of interpretation) is executing the music: the individual
sonic events are not triggered by the musician. The written code serves as a trace of
this conversation with the computer, but since the effects of this conversation are still
sounding and transforming (rthythmic stuttering, melodic canons, shuffling, shifting
patterns, and so on), the performer will need the code on the screen to consider what
they have written and its relationship to the results.* The code is a representation of
the sounding music process, and through reviewing it the performer plans the next
steps, which might include adding new structures, changing running patterns, or delet-
ing parts of what is happening. For this reason existing lines of code in live coding lan-
guages represent data structures, functions, objects, or agents that can be altered during
performance without interruption in the execution of the artwork.

The relationship between code and results is, however, not straightforward—if it
were, the live coder might be better off using conventional sequencer software designed

140 Chapter 4

for working directly on the musical surface of notes. For example, when live coders
compose together elements of different lengths, they create polyrhythmic interference
patterns, bringing a result with features not present in the source elements. Similarly, if
they are live coding behaviors of agents, the musical results are not directly described in
the code but are an emergent property of how the agents interact. Conventionally, pro-
gramming techniques are divided into either an imperative or declarative approach,*
the first addressing the question of how the program should run and the latter address-
ing what the program should achieve. Live coders instead tend toward the question
“What if?,” where the notation is not used to describe a desired procedure or outcome
but instead to simply take the next step in an exploration. Each such step is guided
more by the coder’s musical results of the previous step as they are perceived and less
by an overall plan. The role of notation in live coding then is not to define, prescribe,
record, or transcribe but to take a step into the darkness, into which the interpreter
immediately throws light.

Recording Live Coding

Live coding is notational, digital, and discretely symbolic yet kicks against the assump-
tions of recording and reproduction. As we have seen, in many ways it is an example of
oral culture, especially where live coders celebrate not saving their code. The transience
of the code they write is an essential aspect of being in the moment, held in dramatic
contrast to the life of the professional programmer who saves incremental versions,
configurations, and releases. Nonetheless, all live coding gestures are via computer sys-
tems, which are generally deterministic. If a live coding performance is documented—
for example, through a screen recording or recording of keystrokes—such a performance
may in a sense be perfectly reproduced. However, one aspect applies here as to any
improvised art, whether music, dance, or happenings: the documentation can never
capture the unique spatiotemporal moment in which the performance takes place,
which is dependent on the social context, historical time, and architectural space.
Live coding therefore treads an uncommon path between oral and written culture,
improvisation versus the composed, and the spontaneous versus the arranged. Live
coders often start with a blank page, but behind every written function is precomposed
or pre-grammed code, often encapsulating a great deal of music techniques, such as
syncopations and other transformations. Some live coders operate like jazz musicians:
they practice “licks” that are applied in the live context, composing pieces in real time
that have to some extent been practiced. Live coding is written, like music notated in
staff notation, but it originates as a tradition in which composition happens in real

Notation 141

time, and the results are often abandoned: this music is about the process, the experi-
ence in-the-making, and not about the destination.

Increasingly though, Save buttons are disappearing from text editors and word pro-
cessors because every keystroke triggers a save into the complete history of a document.
Experimental live coding systems, such as Troop and FeedForward,*® are adopting this
model, too, following Sang Won Lee’s work on live writing, in which every key press
is saved with a time stamp and able to be recalled and replayed.>' This signals a shift
away from ephemeral live coding that is made for the moment to plentiful live coding,
where every action is shared immediately to the creative commons. This is an alterna-
tive stand against commercializ